Search

Machine learning Filter

Top 30 Machine Learning Skills required to get a Machine Learning Job

Machine learning has been making a silent revolution in our lives since the past decade. From capturing selfies with a blurry background and focused face capture to getting our queries answered by virtual assistants such as Siri and Alexa, we are increasingly depending on products and applications that implement machine learning at their core.In more basic terms, machine learning is one of the steps involved in artificial intelligence. Machines learn through machine learning. How exactly? Just like how humans learn – through training, experience, and feedback.Once machines learn through machine learning, they implement the knowledge so acquired for many purposes including, but not limited to, sorting, diagnosis, robotics, analysis and predictions in many fields.It is these implementations and applications that have made machine learning an in-demand skill in the field of programming and technology.Look at the stats that show a positive trend for machine learning projects and careers.Gartner’s report on artificial intelligence showed that as many as 2.3 million jobs in machine learning would be available across the globe by 2020.Another study from Indeed, the online job portal giant, revealed that machine learning engineers, data scientists and software engineers with these skills are topping the list of most in-demand professionals.High profile companies such as Univa, Microsoft, Apple, Google, and Amazon have invested millions of dollars on machine learning research and designing and are developing their future projects on it.With so much happening around machine learning, it is no surprise that any enthusiast who is keen on shaping their career in software programming and technology would prefer machine learning as a foundation to their career. This post is specifically aimed at guiding such enthusiasts and gives comprehensive information on skills that are needed to become a machine learning engineer, who is ready to dive into the real-time challenges.Machine Learning SkillsOrganizations are showing massive interest in using machine learning in their products, which would in turn bring plenty of opportunities for machine learning enthusiasts.When you ask machine learning engineers the question – “What do you do as a machine learning engineer?”, chances are high that individual answers would differ from one professional to another. This may sound a little puzzling, but yes, this is true!Hence, a beginner to machine learning needs to have a clear understanding that there are different roles that they can perform with machine learning skills. And accordingly the skill set that they should possess, would differ. This section will give clarity on machine learning skills that are needed to perform various machine learning roles.Broadly, three main roles come into the picture when you talk about machine learning skills:Data EngineerMachine Learning EngineerMachine Learning ScientistOne must understand that data science, machine learning and artificial intelligence are interlinked. The following quote explains this better:Data science produces insights. Machine learning produces predictions. Artificial intelligence produces actions.A machine learning engineer is someone who deals with huge volumes of data to train a machine and impart it with knowledge that it uses to perform a specified task. However, in practice, there may be a little more to add to this:Machine Learning RoleSkills RequiredRoles and ResponsibilitiesData EngineerPython, R, and DatabasesParallel and distributed Knowledge on quality and reliabilityVirtual machines and cloud environmentMapReduce and HadoopCleaning, manipulating and extracting the required data   Developing code for data analysis and manipulationPlays a major role in statistical analysis of dataMachine Learning EngineerConcepts of computer science and software engineeringData analysis and feature engineeringMetrics involved in MLML algorithm selection, and cross validationMath and StatisticsAnalyses and checks the suitability of an algorithm if it caters the needs of the current taskPlays main role in deciding and selecting machine learning libraries for given task.Machine Learning ScientistExpert knowledge in:Robotics and Machine LearningCognitive ScienceEngineeringMathematics and mathematical modelsDesigns new models and algorithms of machine learningResearches intensively on machine learning and publishes their research papers.Thus, gaining machine learning skills should be a task associated with clarity on the job role and of course the passion to learn them. As it is widely known, becoming a machine learning engineer is not a straightforward task like becoming a web developer or a tester.Irrespective of the role, a learner is expected to have solid knowledge on data science. Besides, many other subjects are intricately intertwined in learning machine learning and for a learner it requires a lot of patience and zeal to learn skills and build them up as they move ahead in their career.The following diagram shows the machine learning skills that are in demand year after year:AI - Artificial IntelligenceTensorFlowApache KafkaData ScienceAWS - Amazon Web Services                                                                                                                                                                                                                                                                                                                                Image SourceIn the coming sections, we would be discussing each of these skills in detail and how proficient you are expected to be in them.Technical skills required to become ML EngineerBecoming a machine learning engineer means preparing oneself to handle interesting and challenging tasks that would change the way humanity is experiencing things right now. It demands both technical and non-technical expertise. Firstly, let’s talk about the technical skills needed for a machine learning engineer. Here is a list of technical skills a machine learning engineer is expected to possess:Applied MathematicsNeural Network ArchitecturesPhysicsData Modeling and EvaluationAdvances Signal Processing TechniquesNatural Language ProcessingAudio and video ProcessingReinforcement LearningLet us delve into each skill in detail now:1.Applied MathematicsMathematics plays an important role in machine learning, and hence it is the first one on the list. If you wish to see yourself as a proven machine learning engineer, you ought to love math and be an expert in the following specializations of math.But first let us understand why a machine learning engineer would need math at all? There are many scenarios where a machine learning engineer should depend on math. For example:Choosing the right algorithm that suits the final needsUnderstanding and working with parameters and their settings.Deciding on validation strategiesApproximating the confidence intervals.How much proficiency in Math does a machine learning engineer need to have?It depends on the level at which a machine learning engineer works. The following diagram gives an idea about how important various concepts of math are for a machine learning enthusiast.A) Linear algebra: 15%B) Probability Theory and Statistics: 25%C) Multivariate Calculus: 15%D) Algorithms and Optimization: 15%F) Other concepts: 10%Data SourceA) Linear AlgebraThis concept plays a main role in machine learning. One has to be skilled in the following sub-topics of linear algebra:Principal Component Analysis (PCA), Singular Value Decomposition (SVD)Eigen decomposition of a matrixLU DecompositionQR Decomposition/FactorizationSymmetric MatricesOrthogonalization & OrthonormalizationMatrix OperationsProjectionsEigenvalues & EigenvectorsVector Spaces and NormsB) Probability Theory and StatisticsThe core aim of machine learning is to reduce the probability of error in the final output and decision making of the machine. Thus, it is no wonder that probability and statistics play a major role.The following topics are important in these subjects:CombinatoricsProbability Rules & AxiomsBayes’ TheoremRandom VariablesVariance and ExpectationConditional and Joint DistributionsStandard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian)Moment Generating Functions, Maximum Likelihood Estimation (MLE)Prior and PosteriorMaximum a Posteriori Estimation (MAP)Sampling Methods.C) CalculusIn calculus, the following concepts have notable importance in machine learning:Integral CalculusPartial Derivatives,Vector-Values FunctionsDirectional GradientHessian, Jacobian, Laplacian and Lagrangian Distributions.D) Algorithms and OptimizationThe scalability and the efficiency of computation of a machine learning algorithm depends on the chosen algorithm and optimization technique adopted. The following areas are important from this perspective:Data structures (Binary Trees, Hashing, Heap, Stack etc)Dynamic ProgrammingRandomized & Sublinear AlgorithmGraphsGradient/Stochastic DescentsPrimal-Dual methodsE) Other ConceptsBesides, the ones mentioned above, other concepts of mathematics are also important for a learner of machine learning. They are given below:Real and Complex Analysis (Sets and Sequences, Topology, Metric Spaces, Single-Valued and Continuous Functions Limits, Cauchy Kernel, Fourier Transforms)Information Theory (Entropy, Information Gain)Function Spaces and Manifolds2.Neural Network ArchitecturesNeural networks are the predefined set of algorithms for implementing machine learning tasks. They offer a class of models and play a key role in machine learning.The following are the key reasons why a machine learning enthusiast needs to be skilled in neural networks:Neural networks let one understand how the human brain works and help to model and simulate an artificial one.Neural networks give a deeper insight of parallel computations and sequential computationsThe following are the areas of neural networks that are important for machine learning:Perceptrons Convolutional Neural Networks Recurrent Neural NetworkLong/Short Term Memory Network (LSTM)Hopfield Networks Boltzmann Machine NetworkDeep Belief NetworkDeep Auto-encoders3.PhysicsHaving an idea of physics definitely helps a machine learning engineer. It makes a difference in designing complex systems and is a skill that is a definite bonus for a machine learning enthusiast.4.Data Modeling and EvaluationA machine learning has to work with huge amounts of data and leverage them into predictive analytics. Data modeling and evaluation is important in working with such bulky volumes of data and estimating how good the final model is.For this purpose, the following concepts are worth learnable for a machine learning engineer:Classification AccuracyLogarithmic LossConfusion MatrixArea under CurveF1 ScoreMean Absolute ErrorMean Squared Error5.Advanced Signal Processing TechniquesThe crux of signal processing is to minimize noise and extract the best features of a given signal.For this purpose, it uses certain concepts such as:convex/greedy optimization theory and algorithmsspectral time-frequency analysis of signalsAlgorithms such as wavelets, shearlets, curvelets, contourlets, bandlets, etc.All these concepts find their application in machine learning as well.6. Natural language processingThe importance of natural language processing in artificial intelligence and machine learning is not to be forgotten. Various libraries and techniques of natural language processing used in machine learning are listed here:Gensim and NLTKWord2vecSentiment analysisSummarization7. Audio and Video ProcessingThis differs from natural language processing in the sense that we can apply audio and video processing on audio signals only. For achieving this, the following concepts are essential for a machine learning engineer:Fourier transformsMusic theoryTensorFlow8. Reinforcement LearningThough reinforcement learning plays a major role in learning and understanding deep learning and artificial intelligence, it is good for a beginner of machine learning to know the basic concepts of reinforcement learning.Programming skills required to become ML EngineerMachine learning, ultimately, is coding and feeding the code to the machines and getting them to do the tasks we intend them to do. As such, a machine learning engineer should have hands-on expertise in software programming and related concepts. Here is a list of programming skills a machine learning engineer is expected to have knowledge on:Computer Science Fundamentals and ProgrammingSoftware Engineering and System DesignMachine Learning Algorithms and LibrariesDistributed computingUnixLet us look into each of these programming skills in detail now:1.Computer Science Fundamentals and ProgrammingIt is important that a machine learning engineer apply the concepts of computer science and programming correctly as the situation demands. The following concepts play an important role in machine learning and are a must on the list of the skillsets a machine learning engineer needs to have:Data structures (stacks, queues, multi-dimensional arrays, trees, graphs)Algorithms (searching, sorting, optimization, dynamic programming)Computability and complexity (P vs. NP, NP-complete problems, big-O notation, approximate algorithms, etc.)Computer architecture (memory, cache, bandwidth, deadlocks, distributed processing, etc.)2.Software Engineering and System DesignWhatever a machine learning engineer does, ultimately it is a piece of software code – a beautiful conglomerate of many essential concepts and the one that is entirely different from coding in other software languages.Hence, it is quintessential that a machine learning engineer have solid knowledge of the following areas of software programming and system design:Scaling algorithms with the size of dataBasic best practices of software coding and design, such as requirement analysis, version control, and testing.Communicating with different modules and components of work using library calls, REST APIs and querying through databases.Best measures to avoid bottlenecks and designing the final product such that it is user-friendly.3. Machine Learning Algorithms and LibrariesA machine learning engineer may need to work with multiple packages, libraries, algorithms as a part of day-to-day tasks. It is important that a machine learning engineer is well-versed with the following aspects of machine learning algorithms and libraries:A thorough idea of various learning procedures including linear regression, gradient descent, genetic algorithms, bagging, boosting, and other model-specific methods.Sound knowledge in packages and APIs such as scikit-learn, Theano, Spark MLlib, H2O, TensorFlow, etc.Expertise in models such as decision trees, nearest neighbor, neural net, support vector machine and a knack to deciding which one fits the best.Deciding and choosing hyperparameters that affect learning model and the outcome.Comfortable to work with concepts such as gradient descent, convex optimization, quadratic programming, partial differential equations.Select an algorithm which yields the best performance from random forests, support vector machines (SVMs), and Naive Bayes Classifiers, etc.4   Distributed Computing Working as a machine learning engineer means working with huge sets of data, not just focused on one isolated system, but spread among a cluster of systems. For this purpose, it is important that a machine learning engineer knows the concepts of distributed computing.5. UnixMost clusters and servers that machine learning engineers need to work are variants of Linux(Unix). Though randomly they work on Windows and Mac, more than half of the time, they need to work on Unix systems only. Hence having sound knowledge on Unix and Linux is a key skill to become a machine learning engineer.Programming Languages for Machine LearningMachine learning engineers need to code to train machines. Several programming languages can be used to do this. The list of programming languages that a machine learning expert should essentially know are as under:C, C++ and JavaSpark and HadoopR ProgrammingApache KafkaPythonWeka PlatformMATLAB/OctaveIn this section, let us know in detail why each of these programming languages is important for a machine learning engineer:1.C, C++ and JavaThese languages give essentials of programming and teach many concepts in a simple manner that form a foundation stone for working on complex programming patterns of machine learning. Knowledge of C++ helps to improve the speed of the program, while Java is needed to work with Hadoop and Hive, and other tools that are essential for a machine learning engineer.2.Spark and HadoopHadoop skills are needed for working in a distributed computing environment. Spark, a recent variant of Hadoop is gaining popularity among the machine learning tribe. It is a framework to implement machine learning on a large scale.3.R ProgrammingR is a programming language built by statisticians specifically to work with programming that involves statistics. Many mathematical computations of machine learning are based on statistics; hence it is no wonder that a machine learning engineer needs to have sound knowledge in R programming.4.Apache KafkaApache Kafka concepts such as Kafka Streams and KSQL play a major role in pre-processing of data in machine learning. Also, a sound knowledge of Apache Kafka lets a machine learning engineer to design solutions that are both multi-cloud based or hybrid cloud-based.  Other concepts such as business information such as latency and model accuracy are also from Kafka and find use in Machine learning.5.PythonOf late, Python has become the unanimous programming language for machine learning. In fact, experts quote that humans communicate with machines through Python language.Why Python is preferred for Machine Learning?Python Programming Language has several key features and benefits that make it the monarch of programming languages for machine learning:It is an all-in-one purpose programming language that can do a lot more than dealing with statistics.It is beginner friendly and easy to learn.It boasts of rich libraries and APIs that solve various needs of machine learning pretty easily.Its productivity is higher than its other counterparts.It offers ease of integration and gets the workflow smoothly from the designing stage to the production stage.Python EcoSystemThere are various components of Python that make it preferred language for machine learning. Such components are discussed below:Jupyter NotebookNumpyPandasScikit-LearnTensorFlow1.Jupyter NotebookJupyter offers excellent computational environment for Python based data science applications. With the help of Jupyter notebook, a machine learning engineer can illustrate the flow of the process step-by-step very clearly.2.NumPyNumPy or Numerical Python is one of the components of Python that allows the following operations of machine learning in a smooth way:Fourier transformationLinear algebraic operationsLogical and numerical operations on arrays.Of late, NumPy is gaining attention because it makes an excellent substitute to MATLAB, as it coordinates with Matplotlib and SciPy very smoothly.3.PandasPandas is a Python library that offers various features for loading, manipulating, analysing, modeling and preparing data. It is entirely dedicated for data analysis and manipulation.4.Scikit-learnBuilt on NumPy, SciPy, and Matplotlib, it is an open-source library of Python. It offers excellent features and functionalities for major aspects of machine learning such as clustering, dimensionality reduction, model reduction, regression and classification.5.TensorFlowTensorFlow is another framework of Python. It finds its usage in deep learning and having a knowledge of its libraries such as Keras, helps a machine learning engineer to move ahead confidently in their career.6.Weka PlatformIt is widely known that machine learning is a non-linear process that involves many iterations. Weka or Waikato Environment for Knowledge Analysis is a recent platform that is designed specifically designed for applied machine learning. This tool is also slowing gaining its popularity and thus is a must-include on the list of skills for a machine learning engineer.7.MATLAB/OctaveThis is a basic programming language that was used for simulation of various engineering models. Though not popularly used in machine learning, having sound knowledge in MATLAB lets one learns the other mentioned libraries of Python easily.Soft skills or behavioural skills required to become ML engineerTechnical skills are relevant only when they are paired with good soft skills. And the machine learning profession is no exception to this rule. Here is a list of soft skills that a machine learning engineer should have:Domain knowledgeCommunication SkillsProblem-solving skillsRapid prototypingTime managementLove towards constant learningLet us move ahead and discuss how each of these skills make a difference to a machine learning engineer.1.Domain knowledgeMachine learning is such a subject that needs the best of its application in real-time. Choosing the best algorithm while solving a machine learning problem in your academia is far different from what you do in practice. Various aspects of business come into picture when you are a real-time machine learning engineer. Hence, a solid understanding of the business and domain of machine learning is of utmost importance to succeed as a good machine learning engineer.2.Communication SkillsAs a machine learning engineer, you need to communicate with offshore teams, clients and other business teams. Excellent communication skills are a must to boost your reputation and confidence and to bring up your work in front of peers.3.Problem-solving skillsMachine learning is all about solving real time challenges. One must have good problem-solving skills and be able to weigh the pros and cons of the given problem and apply the best possible methods to solve it.4.Rapid PrototypingChoosing the correct learning method or the algorithm are signs of a machine learning engineer’s good prototyping skills. These skills would be a great saviour in real time as they would show a huge impact on budget and time taken for successfully completing a machine learning project.5.Time managementTraining a machine is not a cake-walk. It takes huge time and patience to train a machine. But it’s not always that machine learning engineers are allotted ample time for completing tasks. Hence, time management is an essential skill a machine learning professional should have to effectively deal with bottlenecks and deadlines.6.Love towards constant learningSince its inception, machine learning has witnessed massive change – both in the way it is implemented and in its final form. As we have seen in the previous section, technical and programming skills that are needed for machine learning are constantly evolving. Hence, to prove oneself a successful machine learning expert, it is very crucial that they have a zeal to update themselves – constantly!ConclusionThe skills that one requires to begin their journey in machine learning are exactly what we have discussed in this post. The future for machine learning is undoubtedly bright with companies ready to offer millions of dollars as remuneration, irrespective of the country and the location.Machine learning and deep learning will create a new set of hot jobs in the next five years. – Dave WatersAll it takes to have an amazing career in machine learning is a strong will to hone one’s skills and gain a solid knowledge of them. All the best for an amazing career in machine learning!

Top 30 Machine Learning Skills required to get a Machine Learning Job

15079
Top 30 Machine Learning Skills required to get a Machine Learning Job

Machine learning has been making a silent revolution in our lives since the past decade. From capturing selfies with a blurry background and focused face capture to getting our queries answered by virtual assistants such as Siri and Alexa, we are increasingly depending on products and applications that implement machine learning at their core.

In more basic terms, machine learning is one of the steps involved in artificial intelligence. Machines learn through machine learning. How exactly? Just like how humans learn – through training, experience, and feedback.

Once machines learn through machine learning, they implement the knowledge so acquired for many purposes including, but not limited to, sorting, diagnosis, robotics, analysis and predictions in many fields.

It is these implementations and applications that have made machine learning an in-demand skill in the field of programming and technology.

Look at the stats that show a positive trend for machine learning projects and careers.

  1. Gartner’s report on artificial intelligence showed that as many as 2.3 million jobs in machine learning would be available across the globe by 2020.
  2. Another study from Indeed, the online job portal giant, revealed that machine learning engineers, data scientists and software engineers with these skills are topping the list of most in-demand professionals.
  3. High profile companies such as Univa, Microsoft, Apple, Google, and Amazon have invested millions of dollars on machine learning research and designing and are developing their future projects on it.

With so much happening around machine learning, it is no surprise that any enthusiast who is keen on shaping their career in software programming and technology would prefer machine learning as a foundation to their career. This post is specifically aimed at guiding such enthusiasts and gives comprehensive information on skills that are needed to become a machine learning engineer, who is ready to dive into the real-time challenges.

Machine Learning Skills

Organizations are showing massive interest in using machine learning in their products, which would in turn bring plenty of opportunities for machine learning enthusiasts.

When you ask machine learning engineers the question – “What do you do as a machine learning engineer?”, chances are high that individual answers would differ from one professional to another. This may sound a little puzzling, but yes, this is true!

Hence, a beginner to machine learning needs to have a clear understanding that there are different roles that they can perform with machine learning skills. And accordingly the skill set that they should possess, would differ. This section will give clarity on machine learning skills that are needed to perform various machine learning roles.

Machine Learning Skills. Machine Learning Roles:- Machine Learning Engineer, Data Engineer, Machine Learning Scientist

Broadly, three main roles come into the picture when you talk about machine learning skills:

  1. Data Engineer
  2. Machine Learning Engineer
  3. Machine Learning Scientist

One must understand that data science, machine learning and artificial intelligence are interlinked. The following quote explains this better:

Data science produces insights. Machine learning produces predictions. Artificial intelligence produces actions.

A machine learning engineer is someone who deals with huge volumes of data to train a machine and impart it with knowledge that it uses to perform a specified task. However, in practice, there may be a little more to add to this:

Machine Learning RoleSkills RequiredRoles and Responsibilities
Data Engineer
  1. Python, R, and Databases
  2. Parallel and distributed 
  3. Knowledge on quality and reliability
  4. Virtual machines and cloud environment
  5. MapReduce and Hadoop
  1. Cleaning, manipulating and extracting the required data   
  2. Developing code for data analysis and manipulation
  3. Plays a major role in statistical analysis of data
Machine Learning Engineer
  1. Concepts of computer science and software engineering
  2. Data analysis and feature engineering
  3. Metrics involved in ML
  4. ML algorithm selection, and cross validation
  5. Math and Statistics
  1. Analyses and checks the suitability of an algorithm if it caters the needs of the current task
  2. Plays main role in deciding and selecting machine learning libraries for given task.
Machine Learning Scientist

Expert knowledge in:

  1. Robotics and Machine Learning
  2. Cognitive Science
  3. Engineering
  4. Mathematics and mathematical models
  1. Designs new models and algorithms of machine learning
  2. Researches intensively on machine learning and publishes their research papers.

Thus, gaining machine learning skills should be a task associated with clarity on the job role and of course the passion to learn them. As it is widely known, becoming a machine learning engineer is not a straightforward task like becoming a web developer or a tester.

Irrespective of the role, a learner is expected to have solid knowledge on data science. Besides, many other subjects are intricately intertwined in learning machine learning and for a learner it requires a lot of patience and zeal to learn skills and build them up as they move ahead in their career.

The following diagram shows the machine learning skills that are in demand year after year:

Demands of machine learning skills such as AI, TensorFlow, Apache Kafka, Data Science and AWS                                                                                                                                                                                                                                                                                                                                Image Source

In the coming sections, we would be discussing each of these skills in detail and how proficient you are expected to be in them.

Technical skills required to become ML Engineer

Top 8 Technical skills required to become a Machine Learning Engineer
Becoming a machine learning engineer means preparing oneself to handle interesting and challenging tasks that would change the way humanity is experiencing things right now. It demands both technical and non-technical expertise. Firstly, let’s talk about the technical skills needed for a machine learning engineer. Here is a list of technical skills a machine learning engineer is expected to possess:

  1. Applied Mathematics
  2. Neural Network Architectures
  3. Physics
  4. Data Modeling and Evaluation
  5. Advances Signal Processing Techniques
  6. Natural Language Processing
  7. Audio and video Processing
  8. Reinforcement Learning

Let us delve into each skill in detail now:

1.Applied Mathematics

Mathematics plays an important role in machine learning, and hence it is the first one on the list. If you wish to see yourself as a proven machine learning engineer, you ought to love math and be an expert in the following specializations of math.

  • But first let us understand why a machine learning engineer would need math at all? There are many scenarios where a machine learning engineer should depend on math. For example:
    • Choosing the right algorithm that suits the final needs
    • Understanding and working with parameters and their settings.
    • Deciding on validation strategies
    • Approximating the confidence intervals.

How much proficiency in Math does a machine learning engineer need to have?

It depends on the level at which a machine learning engineer works. The following diagram gives an idea about how important various concepts of math are for a machine learning enthusiast.

A) Linear algebra: 15%

B) Probability Theory and Statistics: 25%

C) Multivariate Calculus: 15%

D) Algorithms and Optimization: 15%

F) Other concepts: 10%

Data Source

Top 5 Maths concepts needed to become a Machine Learning Engineer

A) Linear Algebra

This concept plays a main role in machine learning. One has to be skilled in the following sub-topics of linear algebra:

  • Principal Component Analysis (PCA), Singular Value Decomposition (SVD)
  • Eigen decomposition of a matrix
  • LU Decomposition
  • QR Decomposition/Factorization
  • Symmetric Matrices
  • Orthogonalization & Orthonormalization
  • Matrix Operations
  • Projections
  • Eigenvalues & Eigenvectors
  • Vector Spaces and Norms

B) Probability Theory and Statistics

The core aim of machine learning is to reduce the probability of error in the final output and decision making of the machine. Thus, it is no wonder that probability and statistics play a major role.

The following topics are important in these subjects:

  • Combinatorics
  • Probability Rules & Axioms
  • Bayes’ Theorem
  • Random Variables
  • Variance and Expectation
  • Conditional and Joint Distributions
  • Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian)
  • Moment Generating Functions, Maximum Likelihood Estimation (MLE)
  • Prior and Posterior
  • Maximum a Posteriori Estimation (MAP)
  • Sampling Methods.

C) Calculus

In calculus, the following concepts have notable importance in machine learning:

  • Integral Calculus
  • Partial Derivatives,
  • Vector-Values Functions
  • Directional Gradient
  • Hessian, Jacobian, Laplacian and Lagrangian Distributions.

D) Algorithms and Optimization

The scalability and the efficiency of computation of a machine learning algorithm depends on the chosen algorithm and optimization technique adopted. The following areas are important from this perspective:

  • Data structures (Binary Trees, Hashing, Heap, Stack etc)
  • Dynamic Programming
  • Randomized & Sublinear Algorithm
  • Graphs
  • Gradient/Stochastic Descents
  • Primal-Dual methods

E) Other Concepts

Besides, the ones mentioned above, other concepts of mathematics are also important for a learner of machine learning. They are given below:

  • Real and Complex Analysis (Sets and Sequences, Topology, Metric Spaces, Single-Valued and Continuous Functions Limits, Cauchy Kernel, Fourier Transforms)
  • Information Theory (Entropy, Information Gain)
  • Function Spaces and Manifolds

2.Neural Network Architectures

Neural networks are the predefined set of algorithms for implementing machine learning tasks. They offer a class of models and play a key role in machine learning.

The following are the key reasons why a machine learning enthusiast needs to be skilled in neural networks:

  • Neural networks let one understand how the human brain works and help to model and simulate an artificial one.
  • Neural networks give a deeper insight of parallel computations and sequential computations

Top 8 Areas of Neural networks that are important for Machine Learning

The following are the areas of neural networks that are important for machine learning:

  • Perceptrons
  •  Convolutional Neural Networks
  •  Recurrent Neural Network
  • Long/Short Term Memory Network (LSTM)
  • Hopfield Networks
  •  Boltzmann Machine Network
  • Deep Belief Network
  • Deep Auto-encoders

3.Physics

Having an idea of physics definitely helps a machine learning engineer. It makes a difference in designing complex systems and is a skill that is a definite bonus for a machine learning enthusiast.

4.Data Modeling and Evaluation

A machine learning has to work with huge amounts of data and leverage them into predictive analytics. Data modeling and evaluation is important in working with such bulky volumes of data and estimating how good the final model is.

For this purpose, the following concepts are worth learnable for a machine learning engineer:

  • Classification Accuracy
  • Logarithmic Loss
  • Confusion Matrix
  • Area under Curve
  • F1 Score
  • Mean Absolute Error
  • Mean Squared Error

5.Advanced Signal Processing Techniques

The crux of signal processing is to minimize noise and extract the best features of a given signal.

For this purpose, it uses certain concepts such as:

  • convex/greedy optimization theory and algorithms
  • spectral time-frequency analysis of signals
  • Algorithms such as wavelets, shearlets, curvelets, contourlets, bandlets, etc.

All these concepts find their application in machine learning as well.

6. Natural language processing

Natural language Processing image

The importance of natural language processing in artificial intelligence and machine learning is not to be forgotten. Various libraries and techniques of natural language processing used in machine learning are listed here:

  • Gensim and NLTK
  • Word2vec
  • Sentiment analysis
  • Summarization

7. Audio and Video Processing

This differs from natural language processing in the sense that we can apply audio and video processing on audio signals only. For achieving this, the following concepts are essential for a machine learning engineer:

  • Fourier transforms
  • Music theory
  • TensorFlow

8. Reinforcement Learning

Though reinforcement learning plays a major role in learning and understanding deep learning and artificial intelligence, it is good for a beginner of machine learning to know the basic concepts of reinforcement learning.

Programming skills required to become ML Engineer

5 Major Programming skills required to become a Machine Learning Engineer

Machine learning, ultimately, is coding and feeding the code to the machines and getting them to do the tasks we intend them to do. As such, a machine learning engineer should have hands-on expertise in software programming and related concepts. Here is a list of programming skills a machine learning engineer is expected to have knowledge on:

  1. Computer Science Fundamentals and Programming
  2. Software Engineering and System Design
  3. Machine Learning Algorithms and Libraries
  4. Distributed computing
  5. Unix

Let us look into each of these programming skills in detail now:

1.Computer Science Fundamentals and Programming

It is important that a machine learning engineer apply the concepts of computer science and programming correctly as the situation demands. The following concepts play an important role in machine learning and are a must on the list of the skillsets a machine learning engineer needs to have:

  • Data structures (stacks, queues, multi-dimensional arrays, trees, graphs)
  • Algorithms (searching, sorting, optimization, dynamic programming)
  • Computability and complexity (P vs. NP, NP-complete problems, big-O notation, approximate algorithms, etc.)
  • Computer architecture (memory, cache, bandwidth, deadlocks, distributed processing, etc.)

2.Software Engineering and System Design

Whatever a machine learning engineer does, ultimately it is a piece of software code – a beautiful conglomerate of many essential concepts and the one that is entirely different from coding in other software languages.

Hence, it is quintessential that a machine learning engineer have solid knowledge of the following areas of software programming and system design:

  • Scaling algorithms with the size of data
  • Basic best practices of software coding and design, such as requirement analysis, version control, and testing.
  • Communicating with different modules and components of work using library calls, REST APIs and querying through databases.
  • Best measures to avoid bottlenecks and designing the final product such that it is user-friendly.

3. Machine Learning Algorithms and Libraries

A machine learning engineer may need to work with multiple packages, libraries, algorithms as a part of day-to-day tasks. It is important that a machine learning engineer is well-versed with the following aspects of machine learning algorithms and libraries:

A thorough idea of various learning procedures including linear regression, gradient descent, genetic algorithms, bagging, boosting, and other model-specific methods.

  • Sound knowledge in packages and APIs such as scikit-learn, Theano, Spark MLlib, H2O, TensorFlow, etc.
  • Expertise in models such as decision trees, nearest neighbor, neural net, support vector machine and a knack to deciding which one fits the best.
  • Deciding and choosing hyperparameters that affect learning model and the outcome.
  • Comfortable to work with concepts such as gradient descent, convex optimization, quadratic programming, partial differential equations.
  • Select an algorithm which yields the best performance from random forests, support vector machines (SVMs), and Naive Bayes Classifiers, etc.

4   Distributed Computing 

Working as a machine learning engineer means working with huge sets of data, not just focused on one isolated system, but spread among a cluster of systems. For this purpose, it is important that a machine learning engineer knows the concepts of distributed computing.

5. Unix

Most clusters and servers that machine learning engineers need to work are variants of Linux(Unix). Though randomly they work on Windows and Mac, more than half of the time, they need to work on Unix systems only. Hence having sound knowledge on Unix and Linux is a key skill to become a machine learning engineer.

Programming Languages for Machine Learning

List of top 11 Programming Languages for Machine Learning

Machine learning engineers need to code to train machines. Several programming languages can be used to do this. The list of programming languages that a machine learning expert should essentially know are as under:

  1. C, C++ and Java
  2. Spark and Hadoop
  3. R Programming
  4. Apache Kafka
  5. Python
  6. Weka Platform
  7. MATLAB/Octave

In this section, let us know in detail why each of these programming languages is important for a machine learning engineer:

1.C, C++ and Java

These languages give essentials of programming and teach many concepts in a simple manner that form a foundation stone for working on complex programming patterns of machine learning. Knowledge of C++ helps to improve the speed of the program, while Java is needed to work with Hadoop and Hive, and other tools that are essential for a machine learning engineer.

2.Spark and Hadoop

Hadoop skills are needed for working in a distributed computing environment. Spark, a recent variant of Hadoop is gaining popularity among the machine learning tribe. It is a framework to implement machine learning on a large scale.

3.R Programming

R is a programming language built by statisticians specifically to work with programming that involves statistics. Many mathematical computations of machine learning are based on statistics; hence it is no wonder that a machine learning engineer needs to have sound knowledge in R programming.

4.Apache Kafka

Apache Kafka concepts such as Kafka Streams and KSQL play a major role in pre-processing of data in machine learning. Also, a sound knowledge of Apache Kafka lets a machine learning engineer to design solutions that are both multi-cloud based or hybrid cloud-based.  Other concepts such as business information such as latency and model accuracy are also from Kafka and find use in Machine learning.

5.Python

Of late, Python has become the unanimous programming language for machine learning. In fact, experts quote that humans communicate with machines through Python language.

Why Python is preferred for Machine Learning?

Python Programming Language has several key features and benefits that make it the monarch of programming languages for machine learning:

  • It is an all-in-one purpose programming language that can do a lot more than dealing with statistics.
  • It is beginner friendly and easy to learn.
  • It boasts of rich libraries and APIs that solve various needs of machine learning pretty easily.
  • Its productivity is higher than its other counterparts.
  • It offers ease of integration and gets the workflow smoothly from the designing stage to the production stage.

Python EcoSystem

There are various components of Python that make it preferred language for machine learning. Such components are discussed below:

  1. Jupyter Notebook
  2. Numpy
  3. Pandas
  4. Scikit-Learn
  5. TensorFlow

Various components of Python Ecosytem. Jupyter Notebook, NumPy, Pandas, Scikit-Learn, TensorFlow

1.Jupyter Notebook

Jupyter offers excellent computational environment for Python based data science applications. With the help of Jupyter notebook, a machine learning engineer can illustrate the flow of the process step-by-step very clearly.

2.NumPy

NumPy or Numerical Python is one of the components of Python that allows the following operations of machine learning in a smooth way:

  • Fourier transformation
  • Linear algebraic operations
  • Logical and numerical operations on arrays.

Of late, NumPy is gaining attention because it makes an excellent substitute to MATLAB, as it coordinates with Matplotlib and SciPy very smoothly.

3.Pandas

Pandas is a Python library that offers various features for loading, manipulating, analysing, modeling and preparing data. It is entirely dedicated for data analysis and manipulation.

4.Scikit-learn

Built on NumPy, SciPy, and Matplotlib, it is an open-source library of Python. It offers excellent features and functionalities for major aspects of machine learning such as clustering, dimensionality reduction, model reduction, regression and classification.

5.TensorFlow

TensorFlow is another framework of Python. It finds its usage in deep learning and having a knowledge of its libraries such as Keras, helps a machine learning engineer to move ahead confidently in their career.

6.Weka Platform

It is widely known that machine learning is a non-linear process that involves many iterations. Weka or Waikato Environment for Knowledge Analysis is a recent platform that is designed specifically designed for applied machine learning. This tool is also slowing gaining its popularity and thus is a must-include on the list of skills for a machine learning engineer.

7.MATLAB/Octave

This is a basic programming language that was used for simulation of various engineering models. Though not popularly used in machine learning, having sound knowledge in MATLAB lets one learns the other mentioned libraries of Python easily.

Soft skills or behavioural skills required to become ML engineer

Top 6 Soft skills required to become a Machine Learning engineer.

Technical skills are relevant only when they are paired with good soft skills. And the machine learning profession is no exception to this rule. Here is a list of soft skills that a machine learning engineer should have:

  1. Domain knowledge
  2. Communication Skills
  3. Problem-solving skills
  4. Rapid prototyping
  5. Time management
  6. Love towards constant learning

Let us move ahead and discuss how each of these skills make a difference to a machine learning engineer.

1.Domain knowledge

Machine learning is such a subject that needs the best of its application in real-time. Choosing the best algorithm while solving a machine learning problem in your academia is far different from what you do in practice. Various aspects of business come into picture when you are a real-time machine learning engineer. Hence, a solid understanding of the business and domain of machine learning is of utmost importance to succeed as a good machine learning engineer.

2.Communication Skills

As a machine learning engineer, you need to communicate with offshore teams, clients and other business teams. Excellent communication skills are a must to boost your reputation and confidence and to bring up your work in front of peers.

3.Problem-solving skills

Machine learning is all about solving real time challenges. One must have good problem-solving skills and be able to weigh the pros and cons of the given problem and apply the best possible methods to solve it.

4.Rapid Prototyping

Choosing the correct learning method or the algorithm are signs of a machine learning engineer’s good prototyping skills. These skills would be a great saviour in real time as they would show a huge impact on budget and time taken for successfully completing a machine learning project.

5.Time management

Training a machine is not a cake-walk. It takes huge time and patience to train a machine. But it’s not always that machine learning engineers are allotted ample time for completing tasks. Hence, time management is an essential skill a machine learning professional should have to effectively deal with bottlenecks and deadlines.

6.Love towards constant learning

Since its inception, machine learning has witnessed massive change – both in the way it is implemented and in its final form. As we have seen in the previous section, technical and programming skills that are needed for machine learning are constantly evolving. Hence, to prove oneself a successful machine learning expert, it is very crucial that they have a zeal to update themselves – constantly!

Conclusion

The skills that one requires to begin their journey in machine learning are exactly what we have discussed in this post. The future for machine learning is undoubtedly bright with companies ready to offer millions of dollars as remuneration, irrespective of the country and the location.

Machine learning and deep learning will create a new set of hot jobs in the next five years. – Dave Waters

All it takes to have an amazing career in machine learning is a strong will to hone one’s skills and gain a solid knowledge of them. All the best for an amazing career in machine learning!

Priyankur

Priyankur Sarkar

Data Science Enthusiast

Priyankur Sarkar loves to play with data and get insightful results out of it, then turn those data insights and results in business growth. He is an electronics engineer with a versatile experience as an individual contributor and leading teams, and has actively worked towards building Machine Learning capabilities for organizations.

Join the Discussion

Your email address will not be published. Required fields are marked *

4 comments

robin 21 Jun 2019

Your article had helped me a lot in learning indepth concepts of Machine learning,keep up the good work.

Rahul sharma 06 Aug 2019

The nice article very good and explained in an easy understanding way thanks to the author...

venkat k 06 Aug 2019

I have been surfing online more than 3 hours lately, yet I by no means discovered any interesting article like yours. Its beautiful value was sufficient for me. In my view, if all webmasters and bloggers made excellent content as you probably did, the internet can be a lot more helpful than ever before.

Bhavana 06 Aug 2019

One of my friend shared this article. I really loved the article and I started subscribing for Knowledgehut, please update me for the upcoming articles related to the machine learning...

Suggested Blogs

Types of Probability Distributions Every Data Science Expert Should know

Data Science has become one of the most popular interdisciplinary fields. It uses scientific approaches, methods, algorithms, and operations to obtain facts and insights from unstructured, semi-structured, and structured datasets. Organizations use these collected facts and insights for efficient production, business growth, and to predict user requirements. Probability distribution plays a significant role in performing data analysis equipping a dataset for training a model. In this article, you will learn about the types of Probability Distribution, random variables, types of discrete distributions, and continuous distribution.  What is Probability Distribution? A Probability Distribution is a statistical method that determines all the probable values and possibilities that a random variable can deliver from a particular range. This range of values will have a lower bound and an upper bound, which we call the minimum and the maximum possible values.  Various factors on which plotting of a value depends are standard deviation, mean (or average), skewness, and kurtosis. All of these play a significant role in Data science as well. We can use probability distribution in physics, engineering, finance, data analysis, machine learning, etc. Significance of Probability distributions in Data Science In a way, most of the data science and machine learning operations are dependent on several assumptions about the probability of your data. Probability distribution allows a skilled data analyst to recognize and comprehend patterns from large data sets; that is, otherwise, entirely random variables and values. Thus, it makes probability distribution a toolkit based on which we can summarize a large data set. The density function and distribution techniques can also help in plotting data, thus supporting data analysts to visualize data and extract meaning. General Properties of Probability Distributions Probability distribution determines the likelihood of any outcome. The mathematical expression takes a specific value of x and shows the possibility of a random variable with p(x). Some general properties of the probability distribution are – The total of all probabilities for any possible value becomes equal to 1. In a probability distribution, the possibility of finding any specific value or a range of values must lie between 0 and 1. Probability distributions tell us the dispersal of the values from the random variable. Consequently, the type of variable also helps determine the type of probability distribution.Common Data Types Before jumping directly into explaining the different probability distributions, let us first understand the different types of probability distributions or the main categories of the probability distribution. Data analysts and data engineers have to deal with a broad spectrum of data, such as text, numerical, image, audio, voice, and many more. Each of these have a specific means to be represented and analyzed. Data in a probability distribution can either be discrete or continuous. Numerical data especially takes one of the two forms. Discrete data: They take specific values where the outcome of the data remains fixed. Like, for example, the consequence of rolling two dice or the number of overs in a T-20 match. In the first case, the result lies between 2 and 12. In the second case, the event will be less than 20. Different types of discrete distributions that use discrete data are: Binomial Distribution Hypergeometric Distribution Geometric Distribution Poisson Distribution Negative Binomial Distribution Multinomial Distribution  Continuous data: It can obtain any value irrespective of bound or limit. Example: weight, height, any trigonometric value, age, etc. Different types of continuous distributions that use continuous data are: Beta distribution Cauchy distribution Exponential distribution Gamma distribution Logistic distribution Weibull distribution Types of Probability Distribution explained Here are some of the popular types of Probability distributions used by data science professionals. (Try all the code using Jupyter Notebook) Normal Distribution: It is also known as Gaussian distribution. It is one of the simplest types of continuous distribution. This probability distribution is symmetrical around its mean value. It also shows that data at close proximity of the mean is frequently occurring, compared to data that is away from it. Here, mean = 0, variance = finite valueHere, you can see 0 at the center is the Normal Distribution for different mean and variance values. Here is a code example showing the use of Normal Distribution: from scipy.stats import norm  import matplotlib.pyplot as mpl  import numpy as np  def normalDist() -> None:      fig, ax = mpl.subplots(1, 1)      mean, var, skew, kurt = norm.stats(moments = 'mvsk')      x = np.linspace(norm.ppf(0.01),  norm.ppf(0.99), 100)      ax.plot(x, norm.pdf(x),          'r-', lw = 5, alpha = 0.6, label = 'norm pdf')      ax.plot(x, norm.cdf(x),          'b-', lw = 5, alpha = 0.6, label = 'norm cdf')      vals = norm.ppf([0.001, 0.5, 0.999])      np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))      r = norm.rvs(size = 1000)      ax.hist(r, normed = True, histtype = 'stepfilled', alpha = 0.2)      ax.legend(loc = 'best', frameon = False)      mpl.show()  normalDist() Output: Bernoulli Distribution: It is the simplest type of probability distribution. It is a particular case of Binomial distribution, where n=1. It means a binomial distribution takes 'n' number of trials, where n > 1 whereas, the Bernoulli distribution takes only a single trial.   Probability Mass Function of a Bernoulli’s Distribution is:  where p = probability of success and q = probability of failureHere is a code example showing the use of Bernoulli Distribution: from scipy.stats import bernoulli  import seaborn as sb    def bernoulliDist():      data_bern = bernoulli.rvs(size=1200, p = 0.7)      ax = sb.distplot(          data_bern,           kde = True,           color = 'g',           hist_kws = {'alpha' : 1},          kde_kws = {'color': 'y', 'lw': 3, 'label': 'KDE'})      ax.set(xlabel = 'Bernouli Values', ylabel = 'Frequency Distribution')  bernoulliDist() Output:Continuous Uniform Distribution: In this type of continuous distribution, all outcomes are equally possible; each variable gets the same probability of hit as a consequence. This symmetric probabilistic distribution has random variables at an equal interval, with the probability of 1/(b-a). Here is a code example showing the use of Uniform Distribution: from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def uniformDist():      sb.distplot(random.uniform(size = 1200), hist = True)      mpl.show()  uniformDist() Output: Log-Normal Distribution: A Log-Normal distribution is another type of continuous distribution of logarithmic values that form a normal distribution. We can transform a log-normal distribution into a normal distribution. Here is a code example showing the use of Log-Normal Distribution import matplotlib.pyplot as mpl  def lognormalDist():      muu, sig = 3, 1      s = np.random.lognormal(muu, sig, 1000)      cnt, bins, ignored = mpl.hist(s, 80, normed = True, align ='mid', color = 'y')      x = np.linspace(min(bins), max(bins), 10000)      calc = (np.exp( -(np.log(x) - muu) **2 / (2 * sig**2))             / (x * sig * np.sqrt(2 * np.pi)))      mpl.plot(x, calc, linewidth = 2.5, color = 'g')      mpl.axis('tight')      mpl.show()  lognormalDist() Output: Pareto Distribution: It is one of the most critical types of continuous distribution. The Pareto Distribution is a skewed statistical distribution that uses power-law to describe quality control, scientific, social, geophysical, actuarial, and many other types of observable phenomena. The distribution shows slow or heavy-decaying tails in the plot, where much of the data reside at its extreme end. Here is a code example showing the use of Pareto Distribution – import numpy as np  from matplotlib import pyplot as plt  from scipy.stats import pareto  def paretoDist():      xm = 1.5        alp = [2, 4, 6]       x = np.linspace(0, 4, 800)      output = np.array([pareto.pdf(x, scale = xm, b = a) for a in alp])      plt.plot(x, output.T)      plt.show()  paretoDist() Output:Exponential Distribution: It is a type of continuous distribution that determines the time elapsed between events (in a Poisson process). Let’s suppose, that you have the Poisson distribution model that holds the number of events happening in a given period. We can model the time between each birth using an exponential distribution.Here is a code example showing the use of Pareto Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def expDist():      sb.distplot(random.exponential(size = 1200), hist = True)      mpl.show()   expDist()Output:Types of the Discrete probability distribution – There are various types of Discrete Probability Distribution a Data science aspirant should know about. Some of them are – Binomial Distribution: It is one of the popular discrete distributions that determine the probability of x success in the 'n' trial. We can use Binomial distribution in situations where we want to extract the probability of SUCCESS or FAILURE from an experiment or survey which went through multiple repetitions. A Binomial distribution holds a fixed number of trials. Also, a binomial event should be independent, and the probability of obtaining failure or success should remain the same. Here is a code example showing the use of Binomial Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb    def binomialDist():      sb.distplot(random.normal(loc = 50, scale = 6, size = 1200), hist = False, label = 'normal')      sb.distplot(random.binomial(n = 100, p = 0.6, size = 1200), hist = False, label = 'binomial')      plt.show()    binomialDist() Output:Geometric Distribution: The geometric probability distribution is one of the crucial types of continuous distributions that determine the probability of any event having likelihood ‘p’ and will happen (occur) after 'n' number of Bernoulli trials. Here 'n' is a discrete random variable. In this distribution, the experiment goes on until we encounter either a success or a failure. The experiment does not depend on the number of trials. Here is a code example showing the use of Geometric Distribution – import matplotlib.pyplot as mpl  def probability_to_occur_at(attempt, probability):      return (1-p)**(attempt - 1) * probability  p = 0.3  attempt = 4  attempts_to_show = range(21)[1:]  print('Possibility that this event will occur on the 7th try: ', probability_to_occur_at(attempt, p))  mpl.xlabel('Number of Trials')  mpl.ylabel('Probability of the Event')  barlist = mpl.bar(attempts_to_show, height=[probability_to_occur_at(x, p) for x in attempts_to_show], tick_label=attempts_to_show)  barlist[attempt].set_color('g')  mpl.show() Output:Poisson Distribution: Poisson distribution is one of the popular types of discrete distribution that shows how many times an event has the possibility of occurrence in a specific set of time. We can obtain this by limiting the Bernoulli distribution from 0 to infinity. Data analysts often use the Poisson distributions to comprehend independent events occurring at a steady rate in a given time interval. Here is a code example showing the use of Poisson Distribution from scipy.stats import poisson  import seaborn as sb  import numpy as np  import matplotlib.pyplot as mpl  def poissonDist():       mpl.figure(figsize = (10, 10))      data_binom = poisson.rvs(mu = 3, size = 5000)      ax = sb.distplot(data_binom, kde=True, color = 'g',                       bins=np.arange(data_binom.min(), data_binom.max() + 1),                       kde_kws={'color': 'y', 'lw': 4, 'label': 'KDE'})      ax.set(xlabel = 'Poisson Distribution', ylabel='Data Frequency')      mpl.show()      poissonDist() Output:Multinomial Distribution: A multinomial distribution is another popular type of discrete probability distribution that calculates the outcome of an event having two or more variables. The term multi means more than one. The Binomial distribution is a particular type of multinomial distribution with two possible outcomes - true/false or heads/tails. Here is a code example showing the use of Multinomial Distribution – import numpy as np  import matplotlib.pyplot as mpl  np.random.seed(99)   n = 12                      pvalue = [0.3, 0.46, 0.22]     s = []  p = []     for size in np.logspace(2, 3):      outcomes = np.random.multinomial(n, pvalue, size=int(size))        prob = sum((outcomes[:,0] == 7) & (outcomes[:,1] == 2) & (outcomes[:,2] == 3))/len(outcomes)      p.append(prob)      s.append(int(size))  fig1 = mpl.figure()  mpl.plot(s, p, 'o-')  mpl.plot(s, [0.0248]*len(s), '--r')  mpl.grid()  mpl.xlim(xmin = 0)  mpl.xlabel('Number of Events')  mpl.ylabel('Function p(X = K)') Output:Negative Binomial Distribution: It is also a type of discrete probability distribution for random variables having negative binomial events. It is also known as the Pascal distribution, where the random variable tells us the number of repeated trials produced during a specific number of experiments.  Here is a code example showing the use of Negative Binomial Distribution – import matplotlib.pyplot as mpl   import numpy as np   from scipy.stats import nbinom    x = np.linspace(0, 6, 70)   gr, kr = 0.3, 0.7        g = nbinom.ppf(x, gr, kr)   s = nbinom.pmf(x, gr, kr)   mpl.plot(x, g, "*", x, s, "r--") Output: Apart from these mentioned distribution types, various other types of probability distributions exist that data science professionals can use to extract reliable datasets. In the next topic, we will understand some interconnections & relationships between various types of probability distributions. Relationship between various Probability distributions – It is surprising to see that different types of probability distributions are interconnected. In the chart shown below, the dashed line is for limited connections between two families of distribution, whereas the solid lines show the exact relationship between them in terms of transformation, variable, type, etc. Conclusion  Probability distributions are prevalent among data analysts and data science professionals because of their wide usage. Today, companies and enterprises hire data science professionals in many sectors, namely, computer science, health, insurance, engineering, and even social science, where probability distributions appear as fundamental tools for application. It is essential for Data analysts and data scientists. to know the core of statistics. Probability Distributions perform a requisite role in analyzing data and cooking a dataset to train the algorithms efficiently. If you want to learn more about data science - particularly probability distributions and their uses, check out KnowledgeHut's comprehensive Data science course. 
9641
Types of Probability Distributions Every Data Scie...

Data Science has become one of the most popular in... Read More

Role of Unstructured Data in Data Science

Data has become the new game changer for businesses. Typically, data scientists categorize data into three broad divisions - structured, semi-structured, and unstructured data. In this article, you will get to know about unstructured data, sources of unstructured data, unstructured data vs. structured data, the use of structured and unstructured data in machine learning, and the difference between structured and unstructured data. Let us first understand what is unstructured data with examples. What is unstructured data? Unstructured data is a kind of data format where there is no organized form or type of data. Videos, texts, images, document files, audio materials, email contents and more are considered to be unstructured data. It is the most copious form of business data, and cannot be stored in a structured database or relational database. Some examples of unstructured data are the photos we post on social media platforms, the tagging we do, the multimedia files we upload, and the documents we share. Seagate predicts that the global data-sphere will expand to 163 zettabytes by 2025, where most of the data will be in the unstructured format. Characteristics of Unstructured DataUnstructured data cannot be organized in a predefined fashion, and is not a homogenous data model. This makes it difficult to manage. Apart from that, these are the other characteristics of unstructured data. You cannot store unstructured data in the form of rows and columns as we do in a database table. Unstructured data is heterogeneous in structure and does not have any specific data model. The creation of such data does not follow any semantics or habits. Due to the lack of any particular sequence or format, it is difficult to manage. Such data does not have an identifiable structure. Sources of Unstructured Data There are various sources of unstructured data. Some of them are: Content websites Social networking sites Online images Memos Reports and research papers Documents, spreadsheets, and presentations Audio mining, chatbots Surveys Feedback systems Advantages of Unstructured Data Unstructured data has become exceptionally easy to store because of MongoDB, Cassandra, or even using JSON. Modern NoSQL databases and software allows data engineers to collect and extract data from various sources. There are numerous benefits that enterprises and businesses can gain from unstructured data. These are: With the advent of unstructured data, we can store data that lacks a proper format or structure. There is no fixed schema or data structure for storing such data, which gives flexibility in storing data of different genres. Unstructured data is much more portable by nature. Unstructured data is scalable and flexible to store. Database systems like MongoDB, Cassandra, etc., can easily handle the heterogeneous properties of unstructured data. Different applications and platforms produce unstructured data that becomes useful in business intelligence, unstructured data analytics, and various other fields. Unstructured data analysis allows finding comprehensive data stories from data like email contents, website information, social media posts, mobile data, cache files and more. Unstructured data, along with data analytics, helps companies improve customer experience. Detection of the taste of consumers and their choices becomes easy because of unstructured data analysis. Disadvantages of Unstructured data Storing and managing unstructured data is difficult because there is no proper structure or schema. Data indexing is also a substantial challenge and hence becomes unclear due to its disorganized nature. Search results from an unstructured dataset are also not accurate because it does not have predefined attributes. Data security is also a challenge due to the heterogeneous form of data. Problems faced and solutions for storing unstructured data. Until recently, it was challenging to store, evaluate, and manage unstructured data. But with the advent of modern data analysis tools, algorithms, CAS (content addressable storage system), and big data technologies, storage and evaluation became easy. Let us first take a look at the various challenges used for storing unstructured data. Storing unstructured data requires a large amount of space. Indexing of unstructured data is a hectic task. Database operations such as deleting and updating become difficult because of the disorganized nature of the data. Storing and managing video, audio, image file, emails, social media data is also challenging. Unstructured data increases the storage cost. For solving such issues, there are some particular approaches. These are: CAS system helps in storing unstructured data efficiently. We can preserve unstructured data in XML format. Developers can store unstructured data in an RDBMS system supporting BLOB. We can convert unstructured data into flexible formats so that evaluating and storage becomes easy. Let us now understand the differences between unstructured data vs. structured data. Unstructured Data Vs. Structured Data In this section, we will understand the difference between structured and unstructured data with examples. STRUCTUREDUNSTRUCTUREDStructured data resides in an organized format in a typical database.Unstructured data cannot reside in an organized format, and hence we cannot store it in a typical database.We can store structured data in SQL database tables having rows and columns.Storing and managing unstructured data requires specialized databases, along with a variety of business intelligence and analytics applications.It is tough to scale a database schema.It is highly scalable.Structured data gets generated in colleges, universities, banks, companies where people have to deal with names, date of birth, salary, marks and so on.We generate or find unstructured data in social media platforms, emails, analyzed data for business intelligence, call centers, chatbots and so on.Queries in structured data allow complex joining.Unstructured data allows only textual queries.The schema of a structured dataset is less flexible and dependent.An unstructured dataset is flexible but does not have any particular schema.It has various concurrency techniques.It has no concurrency techniques.We can use SQL, MySQL, SQLite, Oracle DB, Teradata to store structured data.We can use NoSQL (Not Only SQL) to store unstructured data.Types of Unstructured Data Do you have any idea just how much of unstructured data we produce and from what sources? Unstructured data includes all those forms of data that we cannot actively manage in an RDBMS system that is a transactional system. We can store structured data in the form of records. But this is not the case with unstructured data. Before the advent of object-based storage, most of the unstructured data was stored in file-based systems. Here are some of the types of unstructured data. Rich media content: Entertainment files, surveillance data, multimedia email attachments, geospatial data, audio files (call center and other recorded audio), weather reports (graphical), etc., comes under this genre. Document data: Invoices, text-file records, email contents, productivity applications, etc., are included under this genre. Internet of Things (IoT) data: Ticker data, sensor data, data from other IoT devices come under this genre. Apart from all these, data from business intelligence and analysis, machine learning datasets, and artificial intelligence data training datasets are also a separate genre of unstructured data. Examples of Unstructured Data There are various sources from where we can obtain unstructured data. The prominent use of this data is in unstructured data analytics. Let us now understand what are some examples of unstructured data and their sources – Healthcare industries generate a massive volume of human as well as machine-generated unstructured data. Human-generated unstructured data could be in the form of patient-doctor or patient-nurse conversations, which are usually recorded in audio or text formats. Unstructured data generated by machines includes emergency video camera footage, surgical robots, data accumulated from medical imaging devices like endoscopes, laparoscopes and more.  Social Media is an intrinsic entity of our daily life. Billions of people come together to join channels, share different thoughts, and exchange information with their loved ones. They create and share such data over social media platforms in the form of images, video clips, audio messages, tagging people (this helps companies to map relations between two or more people), entertainment data, educational data, geolocations, texts, etc. Other spectra of data generated from social media platforms are behavior patterns, perceptions, influencers, trends, news, and events. Business and corporate documents generate a multitude of unstructured data such as emails, presentations, reports containing texts, images, presentation reports, video contents, feedback and much more. These documents help to create knowledge repositories within an organization to make better implicit operations. Live chat, video conferencing, web meeting, chatbot-customer messages, surveillance data are other prominent examples of unstructured data that companies can cultivate to get more insights into the details of a person. Some prominent examples of unstructured data used in enterprises and organizations are: Reports and documents, like Word files or PDF files Multimedia files, such as audio, images, designed texts, themes, and videos System logs Medical images Flat files Scanned documents (which are images that hold numbers and text – for example, OCR) Biometric data Unstructured Data Analytics Tools  You might be wondering what tools can come into use to gather and analyze information that does not have a predefined structure or model. Various tools and programming languages use structured and unstructured data for machine learning and data analysis. These are: Tableau MonkeyLearn Apache Spark SAS Python MS. Excel RapidMiner KNIME QlikView Python programming R programming Many cloud services (like Amazon AWS, Microsoft Azure, IBM Cloud, Google Cloud) also offer unstructured data analysis solutions bundled with their services. How to analyze unstructured data? In the past, the process of storage and analysis of unstructured data was not well defined. Enterprises used to carry out this kind of analysis manually. But with the advent of modern tools and programming languages, most of the unstructured data analysis methods became highly advanced. AI-powered tools use algorithms designed precisely to help to break down unstructured data for analysis. Unstructured data analytics tools, along with Natural language processing (NLP) and machine learning algorithms, help advanced software tools analyze and extract analytical data from the unstructured datasets. Before using these tools for analyzing unstructured data, you must properly go through a few steps and keep these points in mind. Set a clear goal for analyzing the data: It is essential to clear your intention about what insights you want to extract from your unstructured data. Knowing this will help you distinguish what type of data you are planning to accumulate. Collect relevant data: Unstructured data is available everywhere, whether it's a social media platform, online feedback or reviews, or a survey form. Depending on the previous point, that is your goal - you have to be precise about what data you want to collect in real-time. Also, keep in mind whether your collected details are relevant or not. Clean your data: Data cleaning or data cleansing is a significant process to detect corrupt or irrelevant data from the dataset, followed by modifying or deleting the coarse and sloppy data. This phase is also known as the data-preprocessing phase, where you have to reduce the noise, carry out data slicing for meaningful representation, and remove unnecessary data. Use Technology and tools: Once you perform the data cleaning, it is time to utilize unstructured data analysis tools to prepare and cultivate the insights from your data. Technologies used for unstructured data storage (NoSQL) can help in managing your flow of data. Other tools and programming libraries like Tableau, Matplotlib, Pandas, and Google Data Studio allows us to extract and visualize unstructured data. Data can be visualized and presented in the form of compelling graphs, plots, and charts. How to Extract information from Unstructured Data? With the growth in digitization during the information era, repetitious transactions in data cause data flooding. The exponential accretion in the speed of digital data creation has brought a whole new domain of understanding user interaction with the online world. According to Gartner, 80% of the data created by an organization or its application is unstructured. While extracting exact information through appropriate analysis of organized data is not yet possible, even obtaining a decent sense of this unstructured data is quite tough. Until now, there are no perfect tools to analyze unstructured data. But algorithms and tools designed using machine learning, Natural language processing, Deep learning, and Graph Analysis (a mathematical method for estimating graph structures) help us to get the upper hand in extracting information from unstructured data. Other neural network models like modern linguistic models follow unsupervised learning techniques to gain a good 'knowledge' about the unstructured dataset before going into a specific supervised learning step. AI-based algorithms and technologies are capable enough to extract keywords, locations, phone numbers, analyze image meaning (through digital image processing). We can then understand what to evaluate and identify information that is essential to your business. ConclusionUnstructured data is found abundantly from sources like documents, records, emails, social media posts, feedbacks, call-records, log-in session data, video, audio, and images. Manually analyzing unstructured data is very time-consuming and can be very boring at the same time. With the growth of data science and machine learning algorithms and models, it has become easy to gather and analyze insights from unstructured information.  According to some research, data analytics tools like MonkeyLearn Studio, Tableau, RapidMiner help analyze unstructured data 1200x faster than the manual approach. Analyzing such data will help you learn more about your customers as well as competitors. Text analysis software, along with machine learning models, will help you dig deep into such datasets and make you gain an in-depth understanding of the overall scenario with fine-grained analyses.
5797
Role of Unstructured Data in Data Science

Data has become the new game changer for busines... Read More

What Is Statistical Analysis and Its Business Applications?

Statistics is a science concerned with collection, analysis, interpretation, and presentation of data. In Statistics, we generally want to study a population. You may consider a population as a collection of things, persons, or objects under experiment or study. It is usually not possible to gain access to all of the information from the entire population due to logistical reasons. So, when we want to study a population, we generally select a sample. In sampling, we select a portion (or subset) of the larger population and then study the portion (or the sample) to learn about the population. Data is the result of sampling from a population.Major ClassificationThere are two basic branches of Statistics – Descriptive and Inferential statistics. Let us understand the two branches in brief. Descriptive statistics Descriptive statistics involves organizing and summarizing the data for better and easier understanding. Unlike Inferential statistics, Descriptive statistics seeks to describe the data, however, it does not attempt to draw inferences from the sample to the whole population. We simply describe the data in a sample. It is not developed on the basis of probability unlike Inferential statistics. Descriptive statistics is further broken into two categories – Measure of Central Tendency and Measures of Variability. Inferential statisticsInferential statistics is the method of estimating the population parameter based on the sample information. It applies dimensions from sample groups in an experiment to contrast the conduct group and make overviews on the large population sample. Please note that the inferential statistics are effective and valuable only when examining each member of the group is difficult. Let us understand Descriptive and Inferential statistics with the help of an example. Task – Suppose, you need to calculate the score of the players who scored a century in a cricket tournament.  Solution: Using Descriptive statistics you can get the desired results.   Task – Now, you need the overall score of the players who scored a century in the cricket tournament.  Solution: Applying the knowledge of Inferential statistics will help you in getting your desired results.  Top Five Considerations for Statistical Data AnalysisData can be messy. Even a small blunder may cost you a fortune. Therefore, special care when working with statistical data is of utmost importance. Here are a few key takeaways you must consider to minimize errors and improve accuracy. Define the purpose and determine the location where the publication will take place.  Understand the assets to undertake the investigation. Understand the individual capability of appropriately managing and understanding the analysis.  Determine whether there is a need to repeat the process.  Know the expectation of the individuals evaluating reviewing, committee, and supervision. Statistics and ParametersDetermining the sample size requires understanding statistics and parameters. The two being very closely related are often confused and sometimes hard to distinguish.  StatisticsA statistic is merely a portion of a target sample. It refers to the measure of the values calculated from the population.  A parameter is a fixed and unknown numerical value used for describing the entire population. The most commonly used parameters are: Mean Median Mode Mean :  The mean is the average or the most common value in a data sample or a population. It is also referred to as the expected value. Formula: Sum of the total number of observations/the number of observations. Experimental data set: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20  Calculating mean:   (2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20)/10  = 110/10   = 11 Median:  In statistics, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. It’s the mid-value obtained by arranging the data in increasing order or descending order. Formula:  Let n be the data set (increasing order) When data set is odd: Median = n+1/2th term Case-I: (n is odd)  Experimental data set = 1, 2, 3, 4, 5  Median (n = 5) = [(5 +1)/2]th term      = 6/2 term       = 3rd term   Therefore, the median is 3 When data set is even: Median = [n/2th + (n/2 + 1)th] /2 Case-II: (n is even)  Experimental data set = 1, 2, 3, 4, 5, 6   Median (n = 6) = [n/2th + (n/2 + 1)th]/2     = ( 6/2th + (6/2 +1)th]/2     = (3rd + 4th)/2      = (3 + 4)/2      = 7/2      = 3.5  Therefore, the median is 3.5 Mode: The mode is the value that appears most often in a set of data or a population. Experimental data set= 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4,4,5, 6  Mode = 3 (Since 3 is the most repeated element in the sequence.) Terms Used to Describe DataWhen working with data, you will need to search, inspect, and characterize them. To understand the data in a tech-savvy and straightforward way, we use a few statistical terms to denote them individually or in groups.  The most frequently used terms used to describe data include data point, quantitative variables, indicator, statistic, time-series data, variable, data aggregation, time series, dataset, and database. Let us define each one of them in brief: Data points: These are the numerical files formed and organized for interpretations. Quantitative variables: These variables present the information in digit form.  Indicator: An indicator explains the action of a community's social-economic surroundings.  Time-series data: The time-series defines the sequential data.  Data aggregation: A group of data points and data set. Database: A group of arranged information for examination and recovery.  Time-series: A set of measures of a variable documented over a specified time. Step-by-Step Statistical Analysis ProcessThe statistical analysis process involves five steps followed one after another. Step 1: Design the study and find the population of the study. Step 2: Collect data as samples. Step 3: Describe the data in the sample. Step 4: Make inferences with the help of samples and calculations Step 5: Take action Data distributionData distribution is an entry that displays entire imaginable readings of data. It shows how frequently a value occurs. Distributed data is always in ascending order, charts, and graphs enabling visibility of measurements and frequencies. The distribution function displaying the density of values of reading is known as the probability density function. Percentiles in data distributionA percentile is the reading in a distribution with a specified percentage of clarifications under it.  Let us understand percentiles with the help of an example.  Suppose you have scored 90th percentile on a math test. A basic interpretation is that merely 4-5% of the scores were higher than your scores. Right? The median is 50th percentile because the assumed 50% of the values are higher than the median. Dispersion Dispersion explains the magnitude of distribution readings anticipated for a specific variable and multiple unique statistics like range, variance, and standard deviation. For instance, high values of a data set are widely scattered while small values of data are firmly clustered. Histogram The histogram is a pictorial display that arranges a group of data facts into user detailed ranges. A histogram summarizes a data series into a simple interpreted graphic by obtaining many data facts and combining them into reasonable ranges. It contains a variety of results into columns on the x-axis. The y axis displays percentages of data for each column and is applied to picture data distributions. Bell Curve distribution Bell curve distribution is a pictorial representation of a probability distribution whose fundamental standard deviation obtained from the mean makes the bell, shaped curving. The peak point on the curve symbolizes the maximum likely occasion in a pattern of data. The other possible outcomes are symmetrically dispersed around the mean, making a descending sloping curve on both sides of the peak. The curve breadth is therefore known as the standard deviation. Hypothesis testingHypothesis testing is a process where experts experiment with a theory of a population parameter. It aims to evaluate the credibility of a hypothesis using sample data. The five steps involved in hypothesis testing are:  Identify the no outcome hypothesis.  (A worthless or a no-output hypothesis has no outcome, connection, or dissimilarities amongst many factors.) Identify the alternative hypothesis.  Establish the importance level of the hypothesis.  Estimate the experiment statistic and equivalent P-value. P-value explains the possibility of getting a sample statistic.  Sketch a conclusion to interpret into a report about the alternate hypothesis. Types of variablesA variable is any digit, amount, or feature that is countable or measurable. Simply put, it is a variable characteristic that varies. The six types of variables include the following: Dependent variableA dependent variable has values that vary according to the value of another variable known as the independent variable.  Independent variableAn independent variable on the other side is controllable by experts. Its reports are recorded and equated.  Intervening variableAn intervening variable explicates fundamental relations between variables. Moderator variableA moderator variable upsets the power of the connection between dependent and independent variables.  Control variableA control variable is anything restricted to a research study. The values are constant throughout the experiment. Extraneous variableExtraneous variable refers to the entire variables that are dependent but can upset experimental outcomes. Chi-square testChi-square test records the contrast of a model to actual experimental data. Data is unsystematic, underdone, equally limited, obtained from independent variables, and a sufficient sample. It relates the size of any inconsistencies among the expected outcomes and the actual outcomes, provided with the sample size and the number of variables in the connection. Types of FrequenciesFrequency refers to the number of repetitions of reading in an experiment in a given time. Three types of frequency distribution include the following: Grouped, ungrouped Cumulative, relative Relative cumulative frequency distribution. Features of FrequenciesThe calculation of central tendency and position (median, mean, and mode). The measure of dispersion (range, variance, and standard deviation). Degree of symmetry (skewness). Peakedness (kurtosis). Correlation MatrixThe correlation matrix is a table that shows the correlation coefficients of unique variables. It is a powerful tool that summarises datasets points and picture sequences in the provided data. A correlation matrix includes rows and columns that display variables. Additionally, the correlation matrix exploits in aggregation with other varieties of statistical analysis. Inferential StatisticsInferential statistics use random data samples for demonstration and to create inferences. They are measured when analysis of each individual of a whole group is not likely to happen. Applications of Inferential StatisticsInferential statistics in educational research is not likely to sample the entire population that has summaries. For instance, the aim of an investigation study may be to obtain whether a new method of learning mathematics develops mathematical accomplishment for all students in a class. Marketing organizations: Marketing organizations use inferential statistics to dispute a survey and request inquiries. It is because carrying out surveys for all the individuals about merchandise is not likely. Finance departments: Financial departments apply inferential statistics for expected financial plan and resources expenses, especially when there are several indefinite aspects. However, economists cannot estimate all that use possibility. Economic planning: In economic planning, there are potent methods like index figures, time series investigation, and estimation. Inferential statistics measures national income and its components. It gathers info about revenue, investment, saving, and spending to establish links among them. Key TakeawaysStatistical analysis is the gathering and explanation of data to expose sequences and tendencies.   Two divisions of statistical analysis are statistical and non-statistical analyses.  Descriptive and Inferential statistics are the two main categories of statistical analysis. Descriptive statistics describe data, whereas Inferential statistics equate dissimilarities between the sample groups.  Statistics aims to teach individuals how to use restricted samples to generate intellectual and precise results for a large group.   Mean, median, and mode are the statistical analysis parameters used to measure central tendency.   Conclusion Statistical analysis is the procedure of gathering and examining data to recognize sequences and trends. It uses random samples of data obtained from a population to demonstrate and create inferences on a group. Inferential statistics applies economic planning with potent methods like index figures, time series investigation, and estimation.  Statistical analysis finds its applications in all the major sectors – marketing, finance, economic, operations, and data mining. Statistical analysis aids marketing organizations in disputing a survey and requesting inquiries concerning their merchandise. 
5886
What Is Statistical Analysis and Its Business Appl...

Statistics is a science concerned with collection,... Read More

Useful links