# Data Science blog posts

## Top Data Analytics Certifications  ## Top Data Analytics Certifications

5631
Top Data Analytics Certifications

What is data analytics?In the world of IT, every s... Read More

## Types of Probability Distributions Every Data Science Expert Should know

Data Science has become one of the most popular interdisciplinary fields. It uses scientific approaches, methods, algorithms, and operations to obtain facts and insights from unstructured, semi-structured, and structured datasets. Organizations use these collected facts and insights for efficient production, business growth, and to predict user requirements. Probability distribution plays a significant role in performing data analysis equipping a dataset for training a model. In this article, you will learn about the types of Probability Distribution, random variables, types of discrete distributions, and continuous distribution.  What is Probability Distribution? A Probability Distribution is a statistical method that determines all the probable values and possibilities that a random variable can deliver from a particular range. This range of values will have a lower bound and an upper bound, which we call the minimum and the maximum possible values.  Various factors on which plotting of a value depends are standard deviation, mean (or average), skewness, and kurtosis. All of these play a significant role in Data science as well. We can use probability distribution in physics, engineering, finance, data analysis, machine learning, etc. Significance of Probability distributions in Data Science In a way, most of the data science and machine learning operations are dependent on several assumptions about the probability of your data. Probability distribution allows a skilled data analyst to recognize and comprehend patterns from large data sets; that is, otherwise, entirely random variables and values. Thus, it makes probability distribution a toolkit based on which we can summarize a large data set. The density function and distribution techniques can also help in plotting data, thus supporting data analysts to visualize data and extract meaning. General Properties of Probability Distributions Probability distribution determines the likelihood of any outcome. The mathematical expression takes a specific value of x and shows the possibility of a random variable with p(x). Some general properties of the probability distribution are – The total of all probabilities for any possible value becomes equal to 1. In a probability distribution, the possibility of finding any specific value or a range of values must lie between 0 and 1. Probability distributions tell us the dispersal of the values from the random variable. Consequently, the type of variable also helps determine the type of probability distribution.Common Data Types Before jumping directly into explaining the different probability distributions, let us first understand the different types of probability distributions or the main categories of the probability distribution. Data analysts and data engineers have to deal with a broad spectrum of data, such as text, numerical, image, audio, voice, and many more. Each of these have a specific means to be represented and analyzed. Data in a probability distribution can either be discrete or continuous. Numerical data especially takes one of the two forms. Discrete data: They take specific values where the outcome of the data remains fixed. Like, for example, the consequence of rolling two dice or the number of overs in a T-20 match. In the first case, the result lies between 2 and 12. In the second case, the event will be less than 20. Different types of discrete distributions that use discrete data are: Binomial Distribution Hypergeometric Distribution Geometric Distribution Poisson Distribution Negative Binomial Distribution Multinomial Distribution  Continuous data: It can obtain any value irrespective of bound or limit. Example: weight, height, any trigonometric value, age, etc. Different types of continuous distributions that use continuous data are: Beta distribution Cauchy distribution Exponential distribution Gamma distribution Logistic distribution Weibull distribution Types of Probability Distribution explained Here are some of the popular types of Probability distributions used by data science professionals. (Try all the code using Jupyter Notebook) Normal Distribution: It is also known as Gaussian distribution. It is one of the simplest types of continuous distribution. This probability distribution is symmetrical around its mean value. It also shows that data at close proximity of the mean is frequently occurring, compared to data that is away from it. Here, mean = 0, variance = finite valueHere, you can see 0 at the center is the Normal Distribution for different mean and variance values. Here is a code example showing the use of Normal Distribution: from scipy.stats import norm  import matplotlib.pyplot as mpl  import numpy as np  def normalDist() -> None:      fig, ax = mpl.subplots(1, 1)      mean, var, skew, kurt = norm.stats(moments = 'mvsk')      x = np.linspace(norm.ppf(0.01),  norm.ppf(0.99), 100)      ax.plot(x, norm.pdf(x),          'r-', lw = 5, alpha = 0.6, label = 'norm pdf')      ax.plot(x, norm.cdf(x),          'b-', lw = 5, alpha = 0.6, label = 'norm cdf')      vals = norm.ppf([0.001, 0.5, 0.999])      np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))      r = norm.rvs(size = 1000)      ax.hist(r, normed = True, histtype = 'stepfilled', alpha = 0.2)      ax.legend(loc = 'best', frameon = False)      mpl.show()  normalDist() Output: Bernoulli Distribution: It is the simplest type of probability distribution. It is a particular case of Binomial distribution, where n=1. It means a binomial distribution takes 'n' number of trials, where n > 1 whereas, the Bernoulli distribution takes only a single trial.   Probability Mass Function of a Bernoulli’s Distribution is:  where p = probability of success and q = probability of failureHere is a code example showing the use of Bernoulli Distribution: from scipy.stats import bernoulli  import seaborn as sb    def bernoulliDist():      data_bern = bernoulli.rvs(size=1200, p = 0.7)      ax = sb.distplot(          data_bern,           kde = True,           color = 'g',           hist_kws = {'alpha' : 1},          kde_kws = {'color': 'y', 'lw': 3, 'label': 'KDE'})      ax.set(xlabel = 'Bernouli Values', ylabel = 'Frequency Distribution')  bernoulliDist() Output:Continuous Uniform Distribution: In this type of continuous distribution, all outcomes are equally possible; each variable gets the same probability of hit as a consequence. This symmetric probabilistic distribution has random variables at an equal interval, with the probability of 1/(b-a). Here is a code example showing the use of Uniform Distribution: from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def uniformDist():      sb.distplot(random.uniform(size = 1200), hist = True)      mpl.show()  uniformDist() Output: Log-Normal Distribution: A Log-Normal distribution is another type of continuous distribution of logarithmic values that form a normal distribution. We can transform a log-normal distribution into a normal distribution. Here is a code example showing the use of Log-Normal Distribution import matplotlib.pyplot as mpl  def lognormalDist():      muu, sig = 3, 1      s = np.random.lognormal(muu, sig, 1000)      cnt, bins, ignored = mpl.hist(s, 80, normed = True, align ='mid', color = 'y')      x = np.linspace(min(bins), max(bins), 10000)      calc = (np.exp( -(np.log(x) - muu) **2 / (2 * sig**2))             / (x * sig * np.sqrt(2 * np.pi)))      mpl.plot(x, calc, linewidth = 2.5, color = 'g')      mpl.axis('tight')      mpl.show()  lognormalDist() Output: Pareto Distribution: It is one of the most critical types of continuous distribution. The Pareto Distribution is a skewed statistical distribution that uses power-law to describe quality control, scientific, social, geophysical, actuarial, and many other types of observable phenomena. The distribution shows slow or heavy-decaying tails in the plot, where much of the data reside at its extreme end. Here is a code example showing the use of Pareto Distribution – import numpy as np  from matplotlib import pyplot as plt  from scipy.stats import pareto  def paretoDist():      xm = 1.5        alp = [2, 4, 6]       x = np.linspace(0, 4, 800)      output = np.array([pareto.pdf(x, scale = xm, b = a) for a in alp])      plt.plot(x, output.T)      plt.show()  paretoDist() Output:Exponential Distribution: It is a type of continuous distribution that determines the time elapsed between events (in a Poisson process). Let’s suppose, that you have the Poisson distribution model that holds the number of events happening in a given period. We can model the time between each birth using an exponential distribution.Here is a code example showing the use of Pareto Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def expDist():      sb.distplot(random.exponential(size = 1200), hist = True)      mpl.show()   expDist()Output:Types of the Discrete probability distribution – There are various types of Discrete Probability Distribution a Data science aspirant should know about. Some of them are – Binomial Distribution: It is one of the popular discrete distributions that determine the probability of x success in the 'n' trial. We can use Binomial distribution in situations where we want to extract the probability of SUCCESS or FAILURE from an experiment or survey which went through multiple repetitions. A Binomial distribution holds a fixed number of trials. Also, a binomial event should be independent, and the probability of obtaining failure or success should remain the same. Here is a code example showing the use of Binomial Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb    def binomialDist():      sb.distplot(random.normal(loc = 50, scale = 6, size = 1200), hist = False, label = 'normal')      sb.distplot(random.binomial(n = 100, p = 0.6, size = 1200), hist = False, label = 'binomial')      plt.show()    binomialDist() Output:Geometric Distribution: The geometric probability distribution is one of the crucial types of continuous distributions that determine the probability of any event having likelihood ‘p’ and will happen (occur) after 'n' number of Bernoulli trials. Here 'n' is a discrete random variable. In this distribution, the experiment goes on until we encounter either a success or a failure. The experiment does not depend on the number of trials. Here is a code example showing the use of Geometric Distribution – import matplotlib.pyplot as mpl  def probability_to_occur_at(attempt, probability):      return (1-p)**(attempt - 1) * probability  p = 0.3  attempt = 4  attempts_to_show = range(21)[1:]  print('Possibility that this event will occur on the 7th try: ', probability_to_occur_at(attempt, p))  mpl.xlabel('Number of Trials')  mpl.ylabel('Probability of the Event')  barlist = mpl.bar(attempts_to_show, height=[probability_to_occur_at(x, p) for x in attempts_to_show], tick_label=attempts_to_show)  barlist[attempt].set_color('g')  mpl.show() Output:Poisson Distribution: Poisson distribution is one of the popular types of discrete distribution that shows how many times an event has the possibility of occurrence in a specific set of time. We can obtain this by limiting the Bernoulli distribution from 0 to infinity. Data analysts often use the Poisson distributions to comprehend independent events occurring at a steady rate in a given time interval. Here is a code example showing the use of Poisson Distribution from scipy.stats import poisson  import seaborn as sb  import numpy as np  import matplotlib.pyplot as mpl  def poissonDist():       mpl.figure(figsize = (10, 10))      data_binom = poisson.rvs(mu = 3, size = 5000)      ax = sb.distplot(data_binom, kde=True, color = 'g',                       bins=np.arange(data_binom.min(), data_binom.max() + 1),                       kde_kws={'color': 'y', 'lw': 4, 'label': 'KDE'})      ax.set(xlabel = 'Poisson Distribution', ylabel='Data Frequency')      mpl.show()      poissonDist() Output:Multinomial Distribution: A multinomial distribution is another popular type of discrete probability distribution that calculates the outcome of an event having two or more variables. The term multi means more than one. The Binomial distribution is a particular type of multinomial distribution with two possible outcomes - true/false or heads/tails. Here is a code example showing the use of Multinomial Distribution – import numpy as np  import matplotlib.pyplot as mpl  np.random.seed(99)   n = 12                      pvalue = [0.3, 0.46, 0.22]     s = []  p = []     for size in np.logspace(2, 3):      outcomes = np.random.multinomial(n, pvalue, size=int(size))        prob = sum((outcomes[:,0] == 7) & (outcomes[:,1] == 2) & (outcomes[:,2] == 3))/len(outcomes)      p.append(prob)      s.append(int(size))  fig1 = mpl.figure()  mpl.plot(s, p, 'o-')  mpl.plot(s, [0.0248]*len(s), '--r')  mpl.grid()  mpl.xlim(xmin = 0)  mpl.xlabel('Number of Events')  mpl.ylabel('Function p(X = K)') Output:Negative Binomial Distribution: It is also a type of discrete probability distribution for random variables having negative binomial events. It is also known as the Pascal distribution, where the random variable tells us the number of repeated trials produced during a specific number of experiments.  Here is a code example showing the use of Negative Binomial Distribution – import matplotlib.pyplot as mpl   import numpy as np   from scipy.stats import nbinom    x = np.linspace(0, 6, 70)   gr, kr = 0.3, 0.7        g = nbinom.ppf(x, gr, kr)   s = nbinom.pmf(x, gr, kr)   mpl.plot(x, g, "*", x, s, "r--") Output: Apart from these mentioned distribution types, various other types of probability distributions exist that data science professionals can use to extract reliable datasets. In the next topic, we will understand some interconnections & relationships between various types of probability distributions. Relationship between various Probability distributions – It is surprising to see that different types of probability distributions are interconnected. In the chart shown below, the dashed line is for limited connections between two families of distribution, whereas the solid lines show the exact relationship between them in terms of transformation, variable, type, etc. Conclusion  Probability distributions are prevalent among data analysts and data science professionals because of their wide usage. Today, companies and enterprises hire data science professionals in many sectors, namely, computer science, health, insurance, engineering, and even social science, where probability distributions appear as fundamental tools for application. It is essential for Data analysts and data scientists. to know the core of statistics. Probability Distributions perform a requisite role in analyzing data and cooking a dataset to train the algorithms efficiently. If you want to learn more about data science - particularly probability distributions and their uses, check out KnowledgeHut's comprehensive Data science course.
9688
Types of Probability Distributions Every Data Scie...

Data Science has become one of the most popular in... Read More

## What Is Statistical Analysis and Its Business Applications?

5899
What Is Statistical Analysis and Its Business Appl...

Statistics is a science concerned with collection,... Read More

## Measures of Dispersion: All You Need to Know

What is Dispersion in StatisticsDispersion in statistics is a way of describing how spread out a set of data is. Dispersion is the state of data getting dispersed, stretched, or spread out in different categories. It involves finding the size of distribution values that are expected from the set of data for the specific variable. The statistical meaning of dispersion is “numeric data that is likely to vary at any instance of average value assumption”.Dispersion of data in Statistics helps one to easily understand the dataset by classifying them into their own specific dispersion criteria like variance, standard deviation, and ranging.Dispersion is a set of measures that helps one to determine the quality of data in an objectively quantifiable manner.The measure of dispersion contains almost the same unit as the quantity being measured. There are many Measures of Dispersion found which help us to get more insights into the data: Range Variance Standard Deviation Skewness IQR  Image SourceTypes of Measure of DispersionThe Measure of Dispersion is divided into two main categories and offer ways of measuring the diverse nature of data. It is mainly used in biological statistics. We can easily classify them by checking whether they contain units or not. So as per the above, we can divide the data into two categories which are: Absolute Measure of Dispersion Relative Measure of DispersionAbsolute Measure of DispersionAbsolute Measure of Dispersion is one with units; it has the same unit as the initial dataset. Absolute Measure of Dispersion is expressed in terms of the average of the dispersion quantities like Standard or Mean deviation. The Absolute Measure of Dispersion can be expressed  in units such as Rupees, Centimetre, Marks, kilograms, and other quantities that are measured depending on the situation. Types of Absolute Measure of Dispersion: Range: Range is the measure of the difference between the largest and smallest value of the data variability. The range is the simplest form of Measure of Dispersion. Example: 1,2,3,4,5,6,7 Range = Highest value – Lowest value  = ( 7 – 1 ) = 6 Mean (μ): Mean is calculated as the average of the numbers. To calculate the Mean, add all the outcomes and then divide it with the total number of terms. Example: 1,2,3,4,5,6,7,8 Mean = (sum of all the terms / total number of terms)  = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) / 8  = 36 / 8  = 4.5 Variance (σ2): In simple terms, the variance can be calculated by obtaining the sum of the squared distance of each term in the distribution from the Mean, and then dividing this by the total number of the terms in the distribution.  It basically shows how far a number, for example, a student’s mark in an exam, is from the Mean of the entire class. Formula: (σ2) = ∑ ( X − μ)2 / N Standard Deviation: Standard Deviation can be represented as the square root of Variance. To find the standard deviation of any data, you need to find the variance first. Formula: Standard Deviation = √σ Quartile: Quartiles divide the list of numbers or data into quarters. Quartile Deviation: Quartile Deviation is the measure of the difference between the upper and lower quartile. This measure of deviation is also known as interquartile range. Formula: Interquartile Range: Q3 – Q1. Mean deviation: Mean Deviation is also known as an average deviation; it can be computed using the Mean or Median of the data. Mean deviation is represented as the arithmetic deviation of a different item that follows the central tendency. Formula: As mentioned, the Mean Deviation can be calculated using Mean and Median. Mean Deviation using Mean: ∑ | X – M | / N Mean Deviation using Median: ∑ | X – X1 | / N Relative Measure of DispersionRelative Measures of dispersion are the values without units. A relative measure of dispersion is used to compare the distribution of two or more datasets.  The definition of the Relative Measure of Dispersion is the same as the Absolute Measure of Dispersion; the only difference is the measuring quantity.  Types of Relative Measure of Dispersion: Relative Measure of Dispersion is the calculation of the co-efficient of Dispersion, where 2 series are compared, which differ widely in their average.  The main use of the co-efficient of Dispersion is when 2 series with different measurement units are compared.  1. Co-efficient of Range: it is calculated as the ratio of the difference between the largest and smallest terms of the distribution, to the sum of the largest and smallest terms of the distribution.  Formula: L – S / L + S  where L = largest value S= smallest value 2. Co-efficient of Variation: The coefficient of variation is used to compare the 2 data with respect to homogeneity or consistency.  Formula: C.V = (σ / X) 100 X = standard deviation  σ = mean 3. Co-efficient of Standard Deviation: The co-efficient of Standard Deviation is the ratio of standard deviation with the mean of the distribution of terms.  Formula: σ = ( √( X – X1)) / (N - 1) Deviation = ( X – X1)  σ = standard deviation  N= total number  4. Co-efficient of Quartile Deviation: The co-efficient of Quartile Deviation is the ratio of the difference between the upper quartile and the lower quartile to the sum of the upper quartile and lower quartile.  Formula: ( Q3 – Q3) / ( Q3 + Q1) Q3 = Upper Quartile  Q1 = Lower Quartile 5. Co-efficient of Mean Deviation: The co-efficient of Mean Deviation can be computed using the mean or median of the data. Mean Deviation using Mean: ∑ | X – M | / N Mean Deviation using Mean: ∑ | X – X1 | / N Why dispersion is important in a statisticThe knowledge of dispersion is vital in the understanding of statistics. It helps to understand concepts like the diversification of the data, how the data is spread, how it is maintained, and maintaining the data over the central value or central tendency. Moreover, dispersion in statistics provides us with a way to get better insights into data distribution. For example,  3 distinct samples can have the same Mean, Median, or Range but completely different levels of variability. How to Calculate DispersionDispersion can be easily calculated using various dispersion measures, which are already mentioned in the types of Measure of Dispersion described above. Before measuring the data, it is important to understand the diversion of the terms and variation. One can use the following method to calculate the dispersion: Mean Standard deviation Variance Quartile deviation For example, let us consider two datasets: Data A:97,98,99,100,101,102,103  Data B: 70,80,90,100,110,120,130 On calculating the mean and median of the two datasets, both have the same value, which is 100. However, the rest of the dispersion measures are totally different as measured by the above methods.  The range of B is 10 times higher, for instance. How to represent Dispersion in Statistics Dispersion in Statistics can be represented in the form of graphs and pie-charts. Some of the different ways used include: Dot Plots Box Plots Stems Leaf Plots Example: What is the variance of the values 3,8,6,10,12,9,11,10,12,7?  Variation of the values can be calculated using the following formula: (σ2) = ∑ ( X − μ)2 / N (σ2) = 7.36 What is an example of dispersion? One of the examples of dispersion outside the world of statistics is the rainbow- where white light is split into 7 different colours separated via wavelengths.  Some statistical ways of measuring it are- Standard deviation Range Mean absolute difference Median absolute deviation Interquartile change Average deviation Conclusion: Dispersion in statistics refers to the measure of variability of data or terms. Such variability may give random measurement errors where some of the instrumental measurements are found to be imprecise. It is a statistical way of describing how the terms are spread out in different data sets. The more sets of values, the more scattered data is found, and it is always directly proportional. This range of values can vary from 5 - 10 values to 1000 - 10,000 values. This spread of data is described by the range of descriptive range of statistics. The dispersion in statistics can be represented using a Dot Plot, Box Plot, and other different ways.
9630
Measures of Dispersion: All You Need to Know

What is Dispersion in StatisticsDispersion in stat... Read More