Explore Courses
course iconScrum AllianceCertified ScrumMaster (CSM) Certification
  • 16 Hours
Best seller
course iconScrum AllianceCertified Scrum Product Owner (CSPO) Certification
  • 16 Hours
Best seller
course iconScaled AgileLeading SAFe 6.0 Certification
  • 16 Hours
Trending
course iconScrum.orgProfessional Scrum Master (PSM) Certification
  • 16 Hours
course iconScaled AgileSAFe 6.0 Scrum Master (SSM) Certification
  • 16 Hours
course iconScaled Agile, Inc.Implementing SAFe 6.0 (SPC) Certification
  • 32 Hours
Recommended
course iconScaled Agile, Inc.SAFe 6.0 Release Train Engineer (RTE) Certification
  • 24 Hours
course iconScaled Agile, Inc.SAFe® 6.0 Product Owner/Product Manager (POPM)
  • 16 Hours
Trending
course iconKanban UniversityKMP I: Kanban System Design Course
  • 16 Hours
course iconIC AgileICP Agile Certified Coaching (ICP-ACC)
  • 24 Hours
course iconScrum.orgProfessional Scrum Product Owner I (PSPO I) Training
  • 16 Hours
course iconAgile Management Master's Program
  • 32 Hours
Trending
course iconAgile Excellence Master's Program
  • 32 Hours
Agile and ScrumScrum MasterProduct OwnerSAFe AgilistAgile CoachFull Stack Developer BootcampData Science BootcampCloud Masters BootcampReactNode JsKubernetesCertified Ethical HackingAWS Solutions Artchitct AssociateAzure Data Engineercourse iconPMIProject Management Professional (PMP) Certification
  • 36 Hours
Best seller
course iconAxelosPRINCE2 Foundation & Practitioner Certificationn
  • 32 Hours
course iconAxelosPRINCE2 Foundation Certification
  • 16 Hours
course iconAxelosPRINCE2 Practitioner Certification
  • 16 Hours
Change ManagementProject Management TechniquesCertified Associate in Project Management (CAPM) CertificationOracle Primavera P6 CertificationMicrosoft Projectcourse iconJob OrientedProject Management Master's Program
  • 45 Hours
Trending
course iconProject Management Master's Program
  • 45 Hours
Trending
PRINCE2 Practitioner CoursePRINCE2 Foundation CoursePMP® Exam PrepProject ManagerProgram Management ProfessionalPortfolio Management Professionalcourse iconAWSAWS Certified Solutions Architect - Associate
  • 32 Hours
Best seller
course iconAWSAWS Cloud Practitioner Certification
  • 32 Hours
course iconAWSAWS DevOps Certification
  • 24 Hours
course iconMicrosoftAzure Fundamentals Certification
  • 16 Hours
course iconMicrosoftAzure Administrator Certification
  • 24 Hours
Best seller
course iconMicrosoftAzure Data Engineer Certification
  • 45 Hours
Recommended
course iconMicrosoftAzure Solution Architect Certification
  • 32 Hours
course iconMicrosoftAzure Devops Certification
  • 40 Hours
course iconAWSSystems Operations on AWS Certification Training
  • 24 Hours
course iconAWSArchitecting on AWS
  • 32 Hours
course iconAWSDeveloping on AWS
  • 24 Hours
course iconJob OrientedAWS Cloud Architect Masters Program
  • 48 Hours
New
course iconCareer KickstarterCloud Engineer Bootcamp
  • 100 Hours
Trending
Cloud EngineerCloud ArchitectAWS Certified Developer Associate - Complete GuideAWS Certified DevOps EngineerAWS Certified Solutions Architect AssociateMicrosoft Certified Azure Data Engineer AssociateMicrosoft Azure Administrator (AZ-104) CourseAWS Certified SysOps Administrator AssociateMicrosoft Certified Azure Developer AssociateAWS Certified Cloud Practitionercourse iconAxelosITIL 4 Foundation Certification
  • 16 Hours
Best seller
course iconAxelosITIL Practitioner Certification
  • 16 Hours
course iconPeopleCertISO 14001 Foundation Certification
  • 16 Hours
course iconPeopleCertISO 20000 Certification
  • 16 Hours
course iconPeopleCertISO 27000 Foundation Certification
  • 24 Hours
course iconAxelosITIL 4 Specialist: Create, Deliver and Support Training
  • 24 Hours
course iconAxelosITIL 4 Specialist: Drive Stakeholder Value Training
  • 24 Hours
course iconAxelosITIL 4 Strategist Direct, Plan and Improve Training
  • 16 Hours
ITIL 4 Specialist: Create, Deliver and Support ExamITIL 4 Specialist: Drive Stakeholder Value (DSV) CourseITIL 4 Strategist: Direct, Plan, and ImproveITIL 4 Foundationcourse iconJob OrientedData Science Bootcamp
  • 6 Months
Trending
course iconJob OrientedData Engineer Bootcamp
  • 289 Hours
course iconJob OrientedData Analyst Bootcamp
  • 6 Months
course iconJob OrientedAI Engineer Bootcamp
  • 288 Hours
New
Data Science with PythonMachine Learning with PythonData Science with RMachine Learning with RPython for Data ScienceDeep Learning Certification TrainingNatural Language Processing (NLP)TensorflowSQL For Data Analyticscourse iconIIIT BangaloreExecutive PG Program in Data Science from IIIT-Bangalore
  • 12 Months
course iconMaryland UniversityExecutive PG Program in DS & ML
  • 12 Months
course iconMaryland UniversityCertificate Program in DS and BA
  • 31 Weeks
course iconIIIT BangaloreAdvanced Certificate Program in Data Science
  • 8+ Months
course iconLiverpool John Moores UniversityMaster of Science in ML and AI
  • 750+ Hours
course iconIIIT BangaloreExecutive PGP in ML and AI
  • 600+ Hours
Data ScientistData AnalystData EngineerAI EngineerData Analysis Using ExcelDeep Learning with Keras and TensorFlowDeployment of Machine Learning ModelsFundamentals of Reinforcement LearningIntroduction to Cutting-Edge AI with TransformersMachine Learning with PythonMaster Python: Advance Data Analysis with PythonMaths and Stats FoundationNatural Language Processing (NLP) with PythonPython for Data ScienceSQL for Data Analytics CoursesAI Advanced: Computer Vision for AI ProfessionalsMaster Applied Machine LearningMaster Time Series Forecasting Using Pythoncourse iconDevOps InstituteDevOps Foundation Certification
  • 16 Hours
Best seller
course iconCNCFCertified Kubernetes Administrator
  • 32 Hours
New
course iconDevops InstituteDevops Leader
  • 16 Hours
KubernetesDocker with KubernetesDockerJenkinsOpenstackAnsibleChefPuppetDevOps EngineerDevOps ExpertCI/CD with Jenkins XDevOps Using JenkinsCI-CD and DevOpsDocker & KubernetesDevOps Fundamentals Crash CourseMicrosoft Certified DevOps Engineer ExperteAnsible for Beginners: The Complete Crash CourseContainer Orchestration Using KubernetesContainerization Using DockerMaster Infrastructure Provisioning with Terraformcourse iconTableau Certification
  • 24 Hours
Recommended
course iconData Visualisation with Tableau Certification
  • 24 Hours
course iconMicrosoftMicrosoft Power BI Certification
  • 24 Hours
Best seller
course iconTIBCO Spotfire Training
  • 36 Hours
course iconData Visualization with QlikView Certification
  • 30 Hours
course iconSisense BI Certification
  • 16 Hours
Data Visualization Using Tableau TrainingData Analysis Using Excelcourse iconEC-CouncilCertified Ethical Hacker (CEH v12) Certification
  • 40 Hours
course iconISACACertified Information Systems Auditor (CISA) Certification
  • 22 Hours
course iconISACACertified Information Security Manager (CISM) Certification
  • 40 Hours
course icon(ISC)²Certified Information Systems Security Professional (CISSP)
  • 40 Hours
course icon(ISC)²Certified Cloud Security Professional (CCSP) Certification
  • 40 Hours
course iconCertified Information Privacy Professional - Europe (CIPP-E) Certification
  • 16 Hours
course iconISACACOBIT5 Foundation
  • 16 Hours
course iconPayment Card Industry Security Standards (PCI-DSS) Certification
  • 16 Hours
course iconIntroduction to Forensic
  • 40 Hours
course iconPurdue UniversityCybersecurity Certificate Program
  • 8 Months
CISSPcourse iconCareer KickstarterFull-Stack Developer Bootcamp
  • 6 Months
Best seller
course iconJob OrientedUI/UX Design Bootcamp
  • 3 Months
Best seller
course iconEnterprise RecommendedJava Full Stack Developer Bootcamp
  • 6 Months
course iconCareer KickstarterFront-End Development Bootcamp
  • 490+ Hours
course iconCareer AcceleratorBackend Development Bootcamp (Node JS)
  • 4 Months
ReactNode JSAngularJavascriptPHP and MySQLcourse iconPurdue UniversityCloud Back-End Development Certificate Program
  • 8 Months
course iconPurdue UniversityFull Stack Development Certificate Program
  • 9 Months
course iconIIIT BangaloreExecutive Post Graduate Program in Software Development - Specialisation in FSD
  • 13 Months
Angular TrainingBasics of Spring Core and MVCFront-End Development BootcampReact JS TrainingSpring Boot and Spring CloudMongoDB Developer Coursecourse iconBlockchain Professional Certification
  • 40 Hours
course iconBlockchain Solutions Architect Certification
  • 32 Hours
course iconBlockchain Security Engineer Certification
  • 32 Hours
course iconBlockchain Quality Engineer Certification
  • 24 Hours
course iconBlockchain 101 Certification
  • 5+ Hours
NFT Essentials 101: A Beginner's GuideIntroduction to DeFiPython CertificationAdvanced Python CourseR Programming LanguageAdvanced R CourseJavaJava Deep DiveScalaAdvanced ScalaC# TrainingMicrosoft .Net Frameworkcourse iconSalary Hike GuaranteedSoftware Engineer Interview Prep
  • 3 Months
Data Structures and Algorithms with JavaScriptData Structures and Algorithms with Java: The Practical GuideLinux Essentials for Developers: The Complete MasterclassMaster Git and GitHubMaster Java Programming LanguageProgramming Essentials for BeginnersComplete Python Programming CourseSoftware Engineering Fundamentals and Lifecycle (SEFLC) CourseTest-Driven Development for Java ProgrammersTypeScript: Beginner to Advanced
  • Home
  • Blog
  • Quality
  • What is Control Charts in Six Sigma and How to Create them?

What is Control Charts in Six Sigma and How to Create them?

By Shivender Sharma

Updated on Aug 25, 2022 | 11 min read

Share:

Since Walter A. Shewhart invented the control chart, it is often referred to as the Shewhart chart. Process behavior chart is another name for it. This allows us to observe how the process has evolved over time. During the control charts Six Sigma project, we typically read the Control chart. To view the process behavior or to hear the voice of the process, a control chart is initially employed (VoP). Only after our method is reliable, we consider launching the project. Otherwise, we need to first stabilize the process by imposing one of the seven efficient quality tools in it. 

When we say a process is stable, we imply that all the data points fall within the acceptable ranges and that there isn't any cause for the process to be unstable. Nowadays Lean Six Sigma Green Belt course is in demand, everyone should learn this course for a better future. 

What is a Control Chart?  

Variations exist everywhere and are a part of every activity. Therefore, neither a common cause variation nor a specific cause variation is possible. The control charts show how these differences affect our process over time, indicating whether it will remain under control or go outside of its bounds. We can see this variance with the use of control charts. The average or mean line serves as the primary line in control charts, and the Upper Control Limit (UCL) and Lower Control Limit follow (LCL). The upper and lower control limits are separated from the center line by three standard deviations on either side. The higher warning line and lower warning limit are also options. 

The next issue is which distance from the center line will standardized deviations away. This restriction is the one that alerts us when data points cross it, since doing so it might render the process unstable. 

Significance & Objective of a Control Chart in Six Sigma  

In order to see the special cause variation, we need a control chart. Special cause variation may not always represent the bad aspect of the process; on occasion, it also serves as a positive indicator. If there is a particular reason for the process variation, we may take preventative measures to keep that unique cause from causing process variation in the future. In a similar vein, if a flat tire causes us to be late, we may take steps to prevent it from happening again. Since the special cause may be avoided but the common cause cannot be avoided, it is also known as the assignable cause. 

One of the purposes of using a control chart is to determine if our process is stable or not. If the process is found to be unstable, we must take action. It even identifies whether a variation's cause can be assigned or not. The control chart usually simplifies a process without addressing its assignable causes. 

It aids in estimating the variance and detecting the process average (the spread in the histogram). We must comprehend that the process under control is more crucial. The process means should also be checked, and all the data points should fall inside the Upper and Lower Control Limits. By doing this, we can assess the capability of our process and decide what we want to do with it. 

Get to know more about the advantages of implementing Six Sigma

Where can we examine the CP and CPK Process Capability? 

We could see the process improvement utilizing the control chart, as well as the process average and its comparison to the previous process mean. This informs us of the degree to which our process is under control. The control chart follows the same principles as a normal chart in that 68 percent of data points must lie within the first standard deviation, 95 percent must be within the second standard deviation, and 99.7 percent must be within the third standard deviation

There are additional considerations in addition to these. As follows: 

  1. When is it necessary to forecast the possible outcomes? 
  2. How can stability be tested? 
  3. When must the pattern of process variations be observed? 
  4. When and how may quality improvement aid in identifying the particular issue and preventing it?

How to Create and Use a Control Chart?  

By entering the data into Minitab and utilizing the control chart as appropriate for the data kinds, we can generate a control chart using Minitab. 

We can create six sigma control charts in Excel if we don't have a Minitab. We must enter all the data points into Excel, average them, and then use the standard deviation algorithm to calculate the standard deviation. After reaching the third standard deviation, we continue and utilize the graph. 

We may create and use the straightforward I-MR chart shown above for continuous data types. 

When to Use a Control Chart?  

  1. At the beginning of a project or whenever we want to see the VoP, we may utilize a control chart. We can even determine the purpose of the project by looking at the VoP. 
  2. With the use of a control chart approaching the project's conclusion, we may also see process improvement. This would also assist in determining the success or failure of the endeavor. 
  3. A control chart may also be used to assess the process' stability, confirm that it is stable enough to be improved, and make any necessary adjustments where they are needed.

A control chart contains a four-state process. 

Below is a discussion of the 4 process states in a control chart: 

  1. The ideal situation is one in which the process is under control and all data points are within acceptable ranges. No non-conformance exists. 
  2. The threshold state is when some non-conformance occurs over time even when data points are under control, or the process is steady. 
  3. The process is in control in this condition but is just on the verge of making mistakes. 
  4. The process is out of control and unforeseen non-conformance occurs in the fourth stage.

Types of Control Charts  

Since the data types of control charts six sigma, there are roughly seven different types. The I-MR Chart, X Bar R Chart, and X Bar S Chart are the three forms of control charts that may be used if the data type is continuous. 

The four different forms of control charts—P, Np, C, and U Charts—are used when we have a discrete data type. These categories are all explained as follows: 

  • MR Chart for I 

We utilize I-MR charts, which stand for Individual Moving Range Charts, when we cannot segment the data because there are not enough data points or perhaps the product requires a lengthy production cycle. Here, the data points in the Control Chart are displayed first, followed by their difference in the chart. 

  • X-Bar R Diagram 

This is used for continuous data when there are two or more subgroup sizes. To ascertain whether a process is stable and predictable, use the standard chart for variables data, X-bar charts, and R charts. In the X bar chart, X represents the meaning of all the subgroups while R represents the range of all the subgroups. 

  • Chart in X Bar S 

We examine the mean of the subgroups and the variance of the process in the X Bar S chart. It may be used for more than 10 subgroups and is utilized for subgroup sizes greater than two. 

Continuous data is used in the aforementioned graphics. Now let's talk about discrete data. Since discrete data is divided into two categories, I faults and (ii) faulty, and because the size of the constant subgroup fluctuates, there are four different types of charts for discrete data. 

  • Control charts for P and Np 

When examining faulty data points, the P and Np charts are used to assess the process' stability. The P chart is used when the sample size changes, but the Np chart is used when the sample is constant. This is the major distinction between the two charts. 

  • Control charts for C and U 

The stability of a single unit, which may contain several defects, is checked with the use of the C and U charts. for instance, the quantity of flaws in a single pen. Additionally, we can detect flaws in one sample of the same magnitude or different flaws in other samples. 

When there are several defects and the sample size is fixed, a C control chart is employed. U Control Charts are employed when there are several defects and when the sample size is not fixed. 

Join now and learn about project management course. Gain the skills to confidently lead, plan, and execute projects. Unleash your potential with our comprehensive course.

Benefits of Using Control Charts and Who Can Benefit from Its Use?  

Since the Statistical Process Control (SPC) is a sort of early warning system that alerts you when your process is about to spiral out of control if no preventive action is done, it aids in lowering the margin of error. 

Additionally, it demonstrates if the process is in control or not and what factors contribute to its loss of control. As a result, we can do the activity without creating a mess. 

Selection of the Right Control Chart  

Control chart is a time series graph with the control limits on both its sides and process mean at center. If the values lie outside the control limits, it shows that the process is out of control. There are various other criteria through which we can detect the out-of-control nature of the process. 

The use of control chart becomes important in Process control. The use of correct control chart helps us to differentiate between a common cause and a special cause. Knowing the type of variation helps us in setting up the right path to improvement. 

The type of data to be used, the size of the subgroup or sample, and other factors all affect the choice of the best control chart. 

Conclusion  

In summary, a control chart is a blessing for process improvement and aids in taking the appropriate preventative action for factors that might result in the process spiraling out of control. The many kinds of control charts and their applications in the real world have been covered in this article. You can learn this in Lean 6 Sigma training courses

In reality, a control chart should be utilized periodically to monitor the functioning of your process since it acts as a kind of physical. When commencing a Six Sigma project, as well as throughout the Improve phase, we may utilize a Control Chart to put some important improvement steps into place and take certain corrective actions to keep the project under control. We have many training courses in market like KnowledgeHut Lean 6 Sigma training courses.

Master Right Skills & Boost Your Career

Avail your free 1:1 mentorship session

Frequently Asked Questions (FAQs)

1. What are the 4 types of control charts?

2. What is a control chart used for?

3. What is a control chart in Dmaic?

4. What is control chart in lean?

5. What is sigma control chart?

6. What are the six sigma control chart examples?

Shivender Sharma

149 articles published

Get Free Consultation

+91

By submitting, I accept the T&C and
Privacy Policy

Suggested Blogs