Ashish is a techology consultant with 13+ years of experience and specializes in Data Science, the Python ecosystem and Django, DevOps and automation. He specializes in the design and delivery of key, impactful programs.
HomeBlogData ScienceOverfitting and Underfitting in Machine Learning + [Example]
There have been many articles written regarding overfitting and underfitting in machine learning, but virtually all of them are merely a list of tools. "Top 10 tools for dealing with overfitting and underfitting," or "best strategies: how to avoid overfitting in machine learning" or "best strategies: how to avoid underfitting in machine learning." It's like being shown nails but not being told how to hammer them. Underfitting and overfitting in machine learning may be highly perplexing for folks attempting to figure out how it works. Furthermore, most of these papers frequently ignore underfitting as if it does not exist.
In this article, I'd like to outline the fundamental principles for enhancing the quality of your model and, as a result, avoid underfitting and overfitting on a specific example. It is challenging to accurately discuss this problem because it is highly generic and can affect any method or model. But I want to make an effort to explain to you why underfitting and overfitting happen and why a certain approach should be employed. You can read more of these articles from the overfitting example Data Science Bootcamp duration.
Before we get into the understanding of what is overfitting and underfitting in machine learning are, let's define some terms that will help us understand this topic better:
Overfitting is a machine learning notion that arises when a statistical model fits perfectly against its training data. When this occurs, the algorithm cannot perform accurately against unseen data, thus contradicting its objective. Generalizing a model to new datasets allows us to use machine learning algorithms to make predictions and classify data daily.
To train the model, machine learning algorithms use sample datasets. The model, however, may begin to learn the "noise" or irrelevant information within the dataset if it trains on sample data for an excessively long time or if the model is overly complex. The model is "overfitted" when it memorizes the noise and fits the training data set too closely, thus preventing it from generalizing well to new data. A model won't be able to accomplish the classification or prediction tasks for which it was designed if it is not capable of making good generalizations to new data.
Low error rates and high variance indicate overfitting. Therefore, a piece of the training dataset is typically set aside as the "test set" to look for overfitting to prevent it. Overfitting occurs when the training data has a low error rate and the test data has a high error rate.
Assume you are performing fraud detection on credit card applications from folks in Jharkhand. There are tens of thousands of examples available to you. You only have seven Gujarati examples, however. Two are part of the validation set, whereas five are part of the training set. They are all classified as fraudulent. As a result, your algorithm will most likely learn that all Gujarat residents are fraudsters, and it will confirm that hypothesis by using those two cases in the validation set. As a result, no one from Wyoming will be approved for a credit card. Now, that is an issue. Your algorithm may perform admirably on average, which is what produces profit. It is not overfitting in general, but it is overfitting in some groups, like Gujarati residents, who will now always be denied a credit card. And this should be seen as a significant issue. It is frequently more subtle than this.
Let us see what causes overfitting in machine learning:
Underfitting is a data science scenario in which a data model cannot effectively represent the connection between the input and output variables, resulting in a high error rate on both the training set and unseen data.
It happens when a model is overly simplistic, which might occur when a model requires more training time, more input characteristics, or less regularization.
When a model is under-fitted, it cannot identify the dominating trend in the data, resulting in training mistakes and poor model performance. Furthermore, a model that does not generalize effectively to new data cannot be used for classification or prediction tasks. Generalizing a model to new data allows us to utilize machine learning algorithms to make predictions and categorize data daily.
Indicators of underfitting include significant bias and low variance. Since this behavior may be seen while using the training dataset, under-fitted models are typically simpler to spot than overfitted ones. Please also see the Data Science online training to get a detailed understanding of these terms and topics.
It is the same as if you gave the student less study material. So he is not appropriately trained and will not be able to perform well in exams. Now, what is the solution? The solution is very simple: train the student well.
A good fit model is a well-balanced model that is free of underfitting and overfitting. This excellent model provides a high accuracy score during training and performs well during testing.
To discover the best-fit model, examine the performance of a machine learning model with training data over time. As the algorithm learns, the model's error on the training data decreases, as does the error on the test dataset. However, if you train the model for too long, it may acquire extraneous information and noise in the training set, leading to overfitting. You must cease training when the error rises to attain a good fit.
There are a few ways we can understand how to "diagnose" underfitting and overfitting.
Underfitting occurs when your model produces accurate but inaccurate predictions at first. In this scenario, the training error is substantial, as is the validation/test error.
Overfitting occurs when your model fails to generate correct predictions. The training error is relatively modest in this example, but the validation/test error is highly significant.
When you identify a decent model, the training error is small (albeit more significant than in the case of overfitting), and the validation/test error is also minimal.
It would help if you remembered as a general intuition that underfitting arises when your model is too simplistic for your data. Conversely, overfitting happens when your model is too complicated for your data.
While detecting overfitting and underfitting is beneficial, it does not address the problem. Fortunately, you have various alternatives to consider. These are some of the most common remedies.
Underfitting may be remedied by moving on and experimenting with different machine-learning techniques. Nonetheless, it stands in stark contrast to the problem of overfitting.
There are several methods for preventing overfitting. First, let us see how to avoid overfitting in machine learning:
1. Cross-validation
2. More data for training
3. Data enhancement
4. Reduce Complexity or Simplify Data
5. Regularization
6. Ensembling
7. Early Termination
Regularization is required for linear and SVM models.
The maximum depth of decision tree models can be reduced.
A dropout layer can be used to minimize overfitting in neural networks.
Let us see some techniques on how to prevent underfitting:
Let us see and understand the difference between overfitting and underfitting in machine learning with examples:
Overfitting, which is the inverse of underfitting, happens when a model has been over-trained or is overly sophisticated, leading to high error rates on test data. Overfitting a model is more prevalent than underfitting, and underfitting is often done to minimize overfitting by a procedure known as "early stopping."
If undertraining or a lack of complexity leads to underfitting, a plausible preventative method would be to extend training time or incorporate more relevant inputs. However, if you overtrain the model or add too many features, it may overfit, resulting in low bias but significant variance (i.e., the bias-variance tradeoff). In this case, the statistical model fits too closely to its training data, preventing it from generalizing successfully to additional data points. It is crucial to remember that some models, such as decision trees or KNN, are more prone to overfitting than others.
If overtraining or model complexity causes overfitting, a sensible preventative approach would be to either interrupt the training process sooner, often known as "early stopping," or to minimize model complexity by removing fewer essential inputs. However, if you stop too soon or eliminate too many crucial characteristics, you may run into the opposite problem and underfit your model. Underfitting happens when the model has not been trained for a sufficient time or when the input variables are insufficiently significant to discover a meaningful link between the input and output variables.
In both cases, the model cannot identify the prevailing trend in the training dataset. As a result, underfitting generalizes poorly to previously unknown data. In contrast to overfitting, under-fitted models have a strong bias and less variation in their predictions. This exemplifies the bias-variance tradeoff when an under-fitted model transitions to an overfitted state. As the model learns, its bias decreases, but its variance increases as it becomes overfitted. When fitting a model, the objective is to locate the "sweet spot" between underfitting and overfitting so that a dominating trend may be established and applied to new datasets.
I won't go into detail regarding the bias/variance tradeoff, but here are some key points you need to know:
The term “Generalization” in Machine Learning refers to the ability of a model to train on a given data and be able to predict with a respectable accuracy on similar but completely new or unseen data. Model generalization can also be considered as the prevention of overfitting of data by making sure that the model learns adequately.
1. Generalization and its effect on an Underfitting Model
If a model is underfitting a given dataset, then all efforts to generalize that model should be avoided. Generalization should only be the goal if the model has learned the patterns of the dataset properly and needs to generalize on top of that. Any attempt to generalize an already underfitting model will lead to further underfitting since it tends to reduce model complexity.
2. Generalization and its effect on Overfitting Model
If a model is overfitting, then it is the ideal candidate to apply generalization techniques upon. This is primarily because an overfitting model has already learned the intricate details and patterns of the dataset. Applying generalization techniques on this kind of a model will lead to a reduction of model complexity and hence prevent overfitting. In addition to that, the model will be able to predict more accurately on unseen, but similar data.
3. Generalization Techniques
There are no separate Generalization techniques as such, but it can easily be achieved if a model performs equally well in both training and validation data. Hence, it can be said that if we apply the techniques to prevent overfitting (eg. Regularization, Ensembling, etc.) on a model that has properly acquired the complex patterns, then a successful generalization of some degree can be achieved.
Three distinct APIs may be used to evaluate the quality of a model's predictions:
Source: scikit-learn.org
Here is the Code Implementation for Analyzing Goodness of Fit. Refer to KnowledgeHut’s Data Science Bootcamp duration for a detailed understanding of these terms. It makes it easy to understand topics like overfitting, how to prevent overfitting and underfitting, model overfitting and underfitting, and more.
Underfitting occurs when your model produces accurate but inaccurate predictions at first. In this scenario, the training error is substantial, as is the validation/test error. Overfitting occurs when your model fails to generate correct predictions. The training error is relatively modest in this example, but the validation/test error is highly significant. When you identify a decent model, the training error is small (albeit bigger than in the case of overfitting), and the validation/test error is also minimal.
Overfitting and underfitting are two significant issues in machine learning that degrade the performance of machine learning models. Each machine learning model's primary goal is to generalize well. In this context, generalization refers to an ML model's capacity to deliver an acceptable output by adjusting the provided set of unknown inputs. Furthermore, it indicates that after training on the dataset, it can give dependable and accurate results. As a result, underfitting and overfitting are the terms that must be examined for model performance and whether the model is generalizing correctly or not.
Methods for removing overfitting:
Methods for removing underfitting:
Name | Date | Fee | Know more |
---|