Search

Machine learning Filter

What is Machine Learning and Why It Matters: Everything You Need to Know

If you are a machine learning enthusiast and stay in touch with the latest developments, you would have definitely come across the news “Machine learning identifies links between the world's oceans”. Wait, we all know how complex it would be to analyse a concept such as oceans and their behaviour which would undoubtedly involve billions of data points associated with many critical parameters such as wind velocities, temperatures, earth’s rotation and many such. Doesn’t this piece of information gives you a glimpse of the wondrous possibilities of machine learning and its potential uses? And this is just a drop in the ocean!As you move across this post, you would get a comprehensive idea of various aspects that you ought to know about machine learning.What is Machine Learning and Why It Matters?Machine learning is a segment of artificial intelligence. It is designed to make computers learn by themselves and perform operations without human intervention, when they are exposed to new data. It means a computer or a system designed with machine learning will identify, analyse and change accordingly and give the expected output when it comes across a new pattern of data, without any need of humans.The power behind machine learning’s self-identification and analysis of new patterns, lies in the complex and powerful ‘pattern recognition’ algorithms that guide them in where to look for what. Thus, the demand for machine learning programmers who have extensive knowledge on working with complex mathematical calculations and applying them to big data and AI is growing year after year.Machine learning, though a buzz word only since recent times, has conceptually been in existence since World War II when Alan Turing’s Bombe, an enigma deciphering machine was introduced to the world. However, it's only in the past decade or so that there has been such great progress made in context to machine learning and its uses, driven mainly by our quest for making this world more futuristic  with lesser human intervention and more precision. Pharma, education technology, industries, science and space, digital inventions, maps and navigation, robotics – you name the domain and you will have instances of machine learning innovations made in it.The Timeline of Machine Learning and the Evolution of MachinesVoice activated home appliances, self-driven cars and online marketing campaigns are some of the applications of machine learning that we experience and enjoy the benefit of in our day to day life. However, the development of such amazing inventions date back to decades. Many great mathematicians and futuristic thinkers were involved in the foundation and development of machine learning.A glimpse of the timeline of machine learning reveals many hidden facts and the efforts of great mathematicians and scientists to whom we should attribute all the fruits that we are enjoying today.1812- 1913: The century that laid the foundation of machine learningThis age laid the mathematical foundation for the development of machine learning. Bayes’ theorem and Markovs Chains took birth during this period.Late 1940s: First computers Computers were recognised as machines that can ‘store data’. The famous Manchester Small-Scale Experimental Machine (nicknamed 'The Manchester Baby') belongs to this era.1950: The official Birth of Machine LearningDespite many researches and theoretical studies done prior to this year, it was the year 1950 that is always remembered as the foundation of the machine learning that we are witnessing today. Alan Turing, researcher, mathematician, computer genius and thinker, submitted a paper where he mentioned something called ‘imitation game’ and astonished the world by questioning “Can Machines Think?”. His research grabbed the attention of the BBC which took an exclusive interview with Alan.1951: The First neural networkThe first artificial neural network was built by Marvin Minsky and Dean Edmonds this year. Today, we all know that artificial neural networks play a key role in the thinking process of computers and machines. This should be attributed to the invention made by these two scientists.1974: Coining of the term ‘Machine Learning’Though there were no specific terms till then for the things that machines did by thinking on their own, it was in 1974 that the term ‘machine learning’ was termed. Other words such as artificial intelligence, informatics and computational intelligence were also proposed the same year.1996: Machine beats man in a game of chessIBM developed its own computer called Deep Blue, that can think. This machine beat the world famous champion in chess, Garry Kasparov. It was then proved to the world that machines can really think like humans.2006-2017: Backpropagation, external memory access and AlphaGoBack propagation is an important technique that machines use for image recognition. This technique was developed in this period of time.Besides in 2014, a neural network developed by DeepMind, a British based company, developed a neural network that can access external memory and get things done.In 2016, AlphaGo was designed by DeepMind researchers. It beat the world famous Go players Lee Sedol and Ke Jie and proved that machines have come a long way.What’s next?Scientists are talking about ‘singularity’ –a phenomenon that would occur if humans develop a humanoid robot that could think better than humans and will recreate itself. So far, we have been witnessing how AI is entering our personal lives too in the form of voice activated devices, smart systems and many more. The results of this singularity – we shall have to wait and watch!Basics of Machine LearningTo put it simply, machine learning involves learning by machines. It means computers learn and there are many concepts, methods, algorithms and processes involved in making this happen. Let us try to understand some of the more important machine learning terms.Three concepts – artificial intelligence, machine learning and deep learning – are often thought to be synonymous. Though they belong to the same family, conceptually they are different.Machine LearningIt implies that machines can ‘learn on their own’ and give the output without any need of programming explicitly.Artificial IntelligenceThis term means machines can ‘think on their own’ just like humans and take decisions.Deep LearningThis involves creation of artificial neural networks which can think and act based on algorithms.How do machines learn?Quite simply, machines learn just like humans do. Humans learn from their training, experiences and through teachers. Sometimes they use knowledge that is fed into their brains, or sometimes take decisions by analysing the current situation using their past experiences.Similarly, machines learn from the inputs given to them which tell them which is right and which is wrong. Then they are given data that they would have to analyse based on the training they have received so far. In some other cases, they do not have any idea of which is right or wrong, but just take the decision based on their own experiences. We will analyse the various concepts of learning and the methods involved.How Machine Learning Works?The process of machine learning occurs in five steps as shown in the following diagram.The steps are explained in simple words below:Gathering the data includes data collection from varied, rich and dense content of various formats and types. In real time, this includes feeding the data from different sources such as text files, word documents or excel sheets.Data preparation involves extracting the actual data out of the entire content fed. Only the data that really makes sense to the machine is used for processing. This step also involves checking for missing data, unwanted data and treatment of outliers.Training involves using an appropriate algorithm and modelling the data. The data filtered in the second step is split into two parts and a part of it is used as training data and the second part is used as reference data. The training data is used to create the model.Evaluating the model includes testing its accuracy. To verify its accuracy to the fullest, the model so developed is tested on such data which is not present in the data during the second step.Finally, the performance of the machine is improved by choosing a different model that suits the different type of data that is present altogether. This is the step where the machine thinks and rethinks in selecting the model best suited for various types of data.Examples of Machine LearningThe below examples will help you understand where machine learning is used in real time:Speech RecognitionVoice based searching and call rerouting are the best examples for speech recognition using machine learning. The principle lies in translating  spoken words into text and then segmenting them on the basis of their frequencies.Image RecognitionWe all use this in day to day life in sorting our pictures on our Google drive or Photos. The main technique that is used here is classifying the pictures based on the intensity (in case of black and white pictures) and measurement of intensities of red, blue and green for coloured images.HealthcareVarious diagnoses are increasingly made using machine learning these days. Here, various clinical parameters are input to the machine which makes a prognosis  and then predicts the disease status and other health parameters of the person under study.Financial ServicesMachine learning helps in predicting chances of financial fraud, customer’s credit habits, spending patterns etc. The financial and banking sector is also doing market analysis using machine learning techniques.Machine Learning – MethodsMachine learning is all about machines learning through the inputs provided. This learning is carried out in the following ways:Supervised LearningAs the name says, the machine learns under supervision. Let’s see how this is done:The entire process of learning takes place in the presence or supervision of a teacher.This mode of learning contains basic steps as follows:First, the machine is trained using a predefined data also called ‘labeled’ data.Then, the correct answer is fed into the computer which allows it to understand what the right and wrong answers should be.Lastly, the system is given a new set of data or unlabelled data, which it would now analyse using techniques such as classification and regression to predict the correct outcome for the current unlabelled data.Example:Consider a shape sorting game that kids play. A bunch of different shapes of wooden pieces are given to kids, say of square shape, triangular shape, circular shape and star shape. Assume that all blocks of a similar shape are of a unique colour. First, you teach the kids which shape is what  and then you ask them to do the sorting on their own.Similarly, in machine learning, you teach the machine through labelled data. Then, the machine is given some unknown data, which it analyses based on the previous labelled data and gives the correct outcome.In this case, if you observe, two techniques have been used.Classification: Based on colors.Regression: Based on shapes.As a further explanation,Classification: A classification problem is when the output variable is a category, such as “Red” or “blue” or “disease” and “no disease”.Regression: A regression problem is when the output variable is a real value, such as “dollars” or “weight”.Unsupervised LearningIn this type of learning, there is no previous knowledge, no previous training, nor a teacher to supervise. This learning is all instantaneous based on the data that is available at that given time.Example:Consider a kid playing with a mix of tomatoes and capsicums. They would sort them involuntarily based on their shape or color. This is an instantaneous reaction without any predefined set of attributes or training.A machine working on unsupervised learning would produce the results based on a similar mechanism. For this purpose, it uses two algorithms as explained below:Clustering: This involves grouping a cluster of data. For example, this is used in analysing the online customer’s purchase patterns and shopping habits.Association: This involves associating the given items based on the portion of their sizes. For example, analysing that people who bought large number of a given item would also prefer other similar items. Semi-supervised LearningThe name itself says the pattern of this algorithm.It is a hybrid mix of both supervised and unsupervised learning and uses both labelled data and unlabelled data to predict the results.In most occurrences, unlabelled data is given more in quantity than labelled data, because of cost considerations.For example, in a folder of thousands of photographs, the machine sorts pictures based on the maximum number of common features (unsupervised) and already defined names of persons in the pictures, if any(supervised)Reinforcement LearningIn reinforcement learning, there is no correct answer known to the system. The system learns from its own experience through a reinforcement agent. Since the answer is not known, the reinforcement agent decides what to do with the given task and for this it uses its experience from the current situation only.Example: In a robotic game that involves earning the hidden treasure, the algorithm focuses on bringing out the best outcome through trial and error method. Mainly three components are observed in this type of learning: the user, the environment and the action the user is performing. The algorithm adjusts itself accordingly to guide the user towards the best result that can be achieved.The diagram shown below summarizes the four types of learning we have learnt so far:Machine Learning – AlgorithmsMachine learning is rich in algorithms that allow programmers to pick one that best suits the context. Some of the machine learning algorithms are:Neural networksDecision treesRandom forestsSupport vector machinesNearest-neighbor mappingk-means clusteringSelf-organizing mapsExpectation maximizationBayesian networksKernel density estimationPrincipal component analysisSingular value decompositionMachine Learning Tools and LibrariesTo start the journey with machine learning, a learner should have knowledge of tools and libraries that are quintessential to designing machine learning code. Here is a list of such tools and libraries:ToolsProgramming LanguageMachine learning can be coded either using R programming language or Python. Of late, Python has become more popular due to its rich libraries, ease of learning and coding friendliness.IDEMachine learning is widely coded in Jupyter Notebook. It simplifies writing of Python code and embedding plots and charts. Google Colab is another free tool that you can choose for the same purpose.LibrariesScikit-LearnA very popular and beginner friendly library.Supports most of the standard algorithms from supervised and unsupervised learning.Offers models for data pre-processing and result analysis.Limited support for deep learning.TensorFlowSupports Neural networks and deep learning.Bulky compared to scikit learnOffers best computational efficiencySupports many classical algorithms of machine learning.PandasThe data gathering and preparation part of machine learning that we have seen in the stages involved in machine learning is taken care of by Pandas. This library:Gathers and prepares data that other libraries of machine learning can use at a later point in time.Gathers data from any type of data source such as text, SQL DB, MS Excel or JSON files.Contains many statistical functionalities that can be used to work on the data that’s gathered.NumPy and SciPyNumPy supports all array based and linear algebraic functions needed while working on data, while SciPy offers many scientific calculations. NumPy is more widely used in many real time applications of machine learning as compared to SciPy.MatplotlibThis is a machine learning library that has an extensive collection of plots and charts. This library is a collection of many other packages. Of them, Seaborn is the most popular and is widely used to work on data structures.PyTorch and KerasThese are known for their usage in Deep learning.PyTorch library is extensively used for Deep Learning. It is known for its amazingly speedy calculations and is very popular among deep learning programmers.Keras uses other libraries such as Tensor flow and is apt for developing neural networks.Machine Learning – ProcessesBesides algorithms, machine learning offers many tools and processes to pair best with big data. Various such processes and tools that are at hand for developers are:Data quality and managementGUIs that ease models and process flowsData exploration in an interactive modeVisualized outputs for modelsChoosing the best learning model by comparisonModel evaluation done automatically that identifies the best performersUser friendly model deployment and data-to-decision processMachine Learning Use CasesHere is a list of five use cases that are based on machine learning:PayPal: The online money transfers giant uses machine learning for detecting any suspicious activities related to financial transactions.Amazon: The company’s Alexa, the digital assistant, is the best example of speech processing application of machine learning. The online retailing giant is also using machine learning to display recommendation to its customers.Facebook: The social media company is using machine learning extensively to filter out spam posts and forwards, and to shred out poor quality content.IBM: The company’s self-driven vehicle uses machine learning in taking a decision whether to give the driving control to a human or computer.Kaspersky: The anti-virus manufacturing company is using machine learning to detect security breaches, or unknown malware threats and also for high quality endpoint security for businesses.Which Industries Use Machine Learning?As we have seen just now, machine learning is being adopted in many industries for the potential advantages it offers. Machine learning can be applied to any industry that deals with huge volumes of data, and which has many challenges to be answered. For instance, machine learning has been found to be extremely useful to organizations in the following domains which are  making the best use of the technology:PharmaceuticalsPharma industry spends billions of dollars on drug design and testing every year across the globe. Machine learning helps in cutting down such costs and to obtain results with accuracy just by entering the entire data of the drugs and their chemical compounds and comparing with various other parameters.Banks and Financial ServicesThis industry has two major needs to be addressed: attracting investor attention and increasing investments, and staying alert and preventing financial frauds and cyber threats. Machine learning does these two major tasks with ease and accuracy.Health Care and TreatmentsBy predicting the possible  diseases that could affect a patient, based on the medical, genetic and lifestyle data, machine learning helps patients stay alert to probable health threats that they may encounter. Wearable smart devices are an example of the machine learning applications in health care.Online SalesCompanies study the patterns that online shoppers are adopting through machine learning and use the results to display related ads, offers and discounts. Personalisation of internet shopping experience, merchandise supply panning and marketing campaigns are all based on the outcomes of machine learning results themselves.Mining, Oil and GasMachine learning helps in predicting accurately the best location of availability of minerals, gas, oil and other such natural resources, which would otherwise need huge investments, manpower and time.Government SchemesMany governments are taking the help of machine learning to study the interests and needs of their people. They are accordingly using the results in plans and schemes, both for the betterment of people and optimum usage of financial resources.Space Exploration and Science StudiesMachine learning greatly helps in studying stars, planets and finding out the secrets of other celestial bodies with far lesser investments and manpower. Scientists are also maximising the use of machine learning to discover various fascinating facts about the earth and its components.Future of Machine LearningCurrently, machine learning is entering our lives with baby steps. By the next decade, radical changes can be expected in machine learning and the way it impacts our lives. Customers have already started trusting the power and comfort of machine learning, and would definitely welcome more such innovations in the near future.Gartner says:Artificial Intelligence and Machine Learning have reached a critical tipping point and will increasingly augment and extend virtually every technology enabled service, thing, or application.So, it would not be surprising if in the future, machine learning would:Make its entry in almost every aspect of human  lifeBe omnipresent in business and industries, irrespective of their sizeEnter  cloud based servicesBring drastic changes in CPU design keeping in mind the need for computational efficiencyAltogether change the shape of data, its processing and usageChange the way connected systems work and look  owing to the ever increasing data on the internet.ConclusionMachine learning is quite different in its own way. While many experts are raising concerns over the ever increasing dependence and presence of machine learning in our everyday lives, on the positive side, machine learning can work wonders. And the world is already witnessing its magic – in health care, finance industry, automotive industry, image processing and voice recognition and many other fields.While many of us worry that machines may take over the world, it is totally up to us, how we design effective, yet safe and controllable machines. There is no doubt that machine learning would change the way we do many things including education, business and health services making the world a safer and better place.

What is Machine Learning and Why It Matters: Everything You Need to Know

10057
  • by Animikh Aich
  • 26th Apr, 2019
  • Last updated on 11th Mar, 2021
  • 15 mins read
What is Machine Learning and Why It Matters: Everything You Need to Know

If you are a machine learning enthusiast and stay in touch with the latest developments, you would have definitely come across the news “Machine learning identifies links between the world's oceans”. Wait, we all know how complex it would be to analyse a concept such as oceans and their behaviour which would undoubtedly involve billions of data points associated with many critical parameters such as wind velocities, temperatures, earth’s rotation and many such. Doesn’t this piece of information gives you a glimpse of the wondrous possibilities of machine learning and its potential uses? And this is just a drop in the ocean!

As you move across this post, you would get a comprehensive idea of various aspects that you ought to know about machine learning.

What is Machine Learning and Why It Matters?

Machine learning is a segment of artificial intelligence. It is designed to make computers learn by themselves and perform operations without human intervention, when they are exposed to new data. It means a computer or a system designed with machine learning will identify, analyse and change accordingly and give the expected output when it comes across a new pattern of data, without any need of humans.

The power behind machine learning’s self-identification and analysis of new patterns, lies in the complex and powerful ‘pattern recognition’ algorithms that guide them in where to look for what. Thus, the demand for machine learning programmers who have extensive knowledge on working with complex mathematical calculations and applying them to big data and AI is growing year after year.

What is ML and Why It Matters

Machine learning, though a buzz word only since recent times, has conceptually been in existence since World War II when Alan Turing’s Bombe, an enigma deciphering machine was introduced to the world. However, it's only in the past decade or so that there has been such great progress made in context to machine learning and its uses, driven mainly by our quest for making this world more futuristic  with lesser human intervention and more precision. Pharma, education technology, industries, science and space, digital inventions, maps and navigation, robotics – you name the domain and you will have instances of machine learning innovations made in it.

The Timeline of Machine Learning and the Evolution of Machines

Voice activated home appliances, self-driven cars and online marketing campaigns are some of the applications of machine learning that we experience and enjoy the benefit of in our day to day life. However, the development of such amazing inventions date back to decades. Many great mathematicians and futuristic thinkers were involved in the foundation and development of machine learning.

A glimpse of the timeline of machine learning reveals many hidden facts and the efforts of great mathematicians and scientists to whom we should attribute all the fruits that we are enjoying today.

Timeline of Machine Learning and Evolution of Machines

  • 1812- 1913: The century that laid the foundation of machine learning

This age laid the mathematical foundation for the development of machine learning. Bayes’ theorem and Markovs Chains took birth during this period.

  • Late 1940s: First computers 

Computers were recognised as machines that can ‘store data’. The famous Manchester Small-Scale Experimental Machine (nicknamed 'The Manchester Baby') belongs to this era.

  • 1950: The official Birth of Machine Learning

Despite many researches and theoretical studies done prior to this year, it was the year 1950 that is always remembered as the foundation of the machine learning that we are witnessing today. Alan Turing, researcher, mathematician, computer genius and thinker, submitted a paper where he mentioned something called ‘imitation game’ and astonished the world by questioning “Can Machines Think?”. His research grabbed the attention of the BBC which took an exclusive interview with Alan.

  • 1951: The First neural network

The first artificial neural network was built by Marvin Minsky and Dean Edmonds this year. Today, we all know that artificial neural networks play a key role in the thinking process of computers and machines. This should be attributed to the invention made by these two scientists.

  • 1974: Coining of the term ‘Machine Learning’

Though there were no specific terms till then for the things that machines did by thinking on their own, it was in 1974 that the term ‘machine learning’ was termed. Other words such as artificial intelligence, informatics and computational intelligence were also proposed the same year.

  • 1996: Machine beats man in a game of chess

IBM developed its own computer called Deep Blue, that can think. This machine beat the world famous champion in chess, Garry Kasparov. It was then proved to the world that machines can really think like humans.

  • 2006-2017: Backpropagation, external memory access and AlphaGo

Back propagation is an important technique that machines use for image recognition. This technique was developed in this period of time.

Besides in 2014, a neural network developed by DeepMind, a British based company, developed a neural network that can access external memory and get things done.

In 2016, AlphaGo was designed by DeepMind researchers. It beat the world famous Go players Lee Sedol and Ke Jie and proved that machines have come a long way.

  • What’s next?

Scientists are talking about ‘singularity’ –a phenomenon that would occur if humans develop a humanoid robot that could think better than humans and will recreate itself. So far, we have been witnessing how AI is entering our personal lives too in the form of voice activated devices, smart systems and many more. The results of this singularity – we shall have to wait and watch!

Basics of Machine Learning

To put it simply, machine learning involves learning by machines. It means computers learn and there are many concepts, methods, algorithms and processes involved in making this happen. Let us try to understand some of the more important machine learning terms.

Three concepts – artificial intelligence, machine learning and deep learning – are often thought to be synonymous. Though they belong to the same family, conceptually they are different.

Basics of Machine Learning

Machine Learning

It implies that machines can ‘learn on their own’ and give the output without any need of programming explicitly.

Artificial Intelligence

This term means machines can ‘think on their own’ just like humans and take decisions.

Deep Learning

This involves creation of artificial neural networks which can think and act based on algorithms.

How do machines learn?

Quite simply, machines learn just like humans do. Humans learn from their training, experiences and through teachers. Sometimes they use knowledge that is fed into their brains, or sometimes take decisions by analysing the current situation using their past experiences.

Similarly, machines learn from the inputs given to them which tell them which is right and which is wrong. Then they are given data that they would have to analyse based on the training they have received so far. In some other cases, they do not have any idea of which is right or wrong, but just take the decision based on their own experiences. We will analyse the various concepts of learning and the methods involved.

How Machine Learning Works?

The process of machine learning occurs in five steps as shown in the following diagram.

How Machine Learning Works

The steps are explained in simple words below:

  • Gathering the data includes data collection from varied, rich and dense content of various formats and types. In real time, this includes feeding the data from different sources such as text files, word documents or excel sheets.
  • Data preparation involves extracting the actual data out of the entire content fed. Only the data that really makes sense to the machine is used for processing. This step also involves checking for missing data, unwanted data and treatment of outliers.
  • Training involves using an appropriate algorithm and modelling the data. The data filtered in the second step is split into two parts and a part of it is used as training data and the second part is used as reference data. The training data is used to create the model.
  • Evaluating the model includes testing its accuracy. To verify its accuracy to the fullest, the model so developed is tested on such data which is not present in the data during the second step.
  • Finally, the performance of the machine is improved by choosing a different model that suits the different type of data that is present altogether. This is the step where the machine thinks and rethinks in selecting the model best suited for various types of data.

Examples of Machine Learning

The below examples will help you understand where machine learning is used in real time:

Machine Learning Examples

Speech Recognition

Voice based searching and call rerouting are the best examples for speech recognition using machine learning. The principle lies in translating  spoken words into text and then segmenting them on the basis of their frequencies.

Image Recognition

We all use this in day to day life in sorting our pictures on our Google drive or Photos. The main technique that is used here is classifying the pictures based on the intensity (in case of black and white pictures) and measurement of intensities of red, blue and green for coloured images.

Healthcare

Various diagnoses are increasingly made using machine learning these days. Here, various clinical parameters are input to the machine which makes a prognosis  and then predicts the disease status and other health parameters of the person under study.

Financial Services

Machine learning helps in predicting chances of financial fraud, customer’s credit habits, spending patterns etc. The financial and banking sector is also doing market analysis using machine learning techniques.

Machine Learning – Methods

Machine learning is all about machines learning through the inputs provided. This learning is carried out in the following ways:

Supervised Learning

As the name says, the machine learns under supervision. Let’s see how this is done:

  • The entire process of learning takes place in the presence or supervision of a teacher.
  • This mode of learning contains basic steps as follows:
    • First, the machine is trained using a predefined data also called ‘labeled’ data.
    • Then, the correct answer is fed into the computer which allows it to understand what the right and wrong answers should be.
  • Lastly, the system is given a new set of data or unlabelled data, which it would now analyse using techniques such as classification and regression to predict the correct outcome for the current unlabelled data.

Example:

Consider a shape sorting game that kids play. A bunch of different shapes of wooden pieces are given to kids, say of square shape, triangular shape, circular shape and star shape. Assume that all blocks of a similar shape are of a unique colour. First, you teach the kids which shape is what  and then you ask them to do the sorting on their own.

Similarly, in machine learning, you teach the machine through labelled data. Then, the machine is given some unknown data, which it analyses based on the previous labelled data and gives the correct outcome.

In this case, if you observe, two techniques have been used.

  • Classification: Based on colors.
  • Regression: Based on shapes.

As a further explanation,

  • Classification: A classification problem is when the output variable is a category, such as “Red” or “blue” or “disease” and “no disease”.
  • Regression: A regression problem is when the output variable is a real value, such as “dollars” or “weight”.

Unsupervised Learning

  • In this type of learning, there is no previous knowledge, no previous training, nor a teacher to supervise. This learning is all instantaneous based on the data that is available at that given time.

Example:

Consider a kid playing with a mix of tomatoes and capsicums. They would sort them involuntarily based on their shape or color. This is an instantaneous reaction without any predefined set of attributes or training.

A machine working on unsupervised learning would produce the results based on a similar mechanism. For this purpose, it uses two algorithms as explained below:

  • Clustering: This involves grouping a cluster of data. For example, this is used in analysing the online customer’s purchase patterns and shopping habits.
  • Association: This involves associating the given items based on the portion of their sizes. For example, analysing that people who bought large number of a given item would also prefer other similar items. 

Semi-supervised Learning

The name itself says the pattern of this algorithm.

  • It is a hybrid mix of both supervised and unsupervised learning and uses both labelled data and unlabelled data to predict the results.
  • In most occurrences, unlabelled data is given more in quantity than labelled data, because of cost considerations.
  • For example, in a folder of thousands of photographs, the machine sorts pictures based on the maximum number of common features (unsupervised) and already defined names of persons in the pictures, if any(supervised)

Reinforcement Learning

In reinforcement learning, there is no correct answer known to the system. The system learns from its own experience through a reinforcement agent. Since the answer is not known, the reinforcement agent decides what to do with the given task and for this it uses its experience from the current situation only.

Example: In a robotic game that involves earning the hidden treasure, the algorithm focuses on bringing out the best outcome through trial and error method. Mainly three components are observed in this type of learning: the user, the environment and the action the user is performing. The algorithm adjusts itself accordingly to guide the user towards the best result that can be achieved.

The diagram shown below summarizes the four types of learning we have learnt so far:

Types of Machine Learning:- Supervised, Unsupervised, Semi-supervised and Reinforced Learning.

Machine Learning – Algorithms

Machine learning is rich in algorithms that allow programmers to pick one that best suits the context. Some of the machine learning algorithms are:

  • Neural networks
  • Decision trees
  • Random forests
  • Support vector machines
  • Nearest-neighbor mapping
  • k-means clustering
  • Self-organizing maps
  • Expectation maximization
  • Bayesian networks
  • Kernel density estimation
  • Principal component analysis
  • Singular value decomposition

Machine Learning Tools and Libraries

To start the journey with machine learning, a learner should have knowledge of tools and libraries that are quintessential to designing machine learning code. Here is a list of such tools and libraries:

Tools

Programming Language

Machine learning can be coded either using R programming language or Python. Of late, Python has become more popular due to its rich libraries, ease of learning and coding friendliness.

IDE

Machine learning is widely coded in Jupyter Notebook. It simplifies writing of Python code and embedding plots and charts. Google Colab is another free tool that you can choose for the same purpose.

Libraries

Scikit-Learn

  • A very popular and beginner friendly library.
  • Supports most of the standard algorithms from supervised and unsupervised learning.
  • Offers models for data pre-processing and result analysis.
  • Limited support for deep learning.

TensorFlow

  • Supports Neural networks and deep learning.
  • Bulky compared to scikit learn
  • Offers best computational efficiency
  • Supports many classical algorithms of machine learning.

Pandas

The data gathering and preparation part of machine learning that we have seen in the stages involved in machine learning is taken care of by Pandas. This library:

  • Gathers and prepares data that other libraries of machine learning can use at a later point in time.
  • Gathers data from any type of data source such as text, SQL DB, MS Excel or JSON files.
  • Contains many statistical functionalities that can be used to work on the data that’s gathered.

NumPy and SciPy

NumPy supports all array based and linear algebraic functions needed while working on data, while SciPy offers many scientific calculations. NumPy is more widely used in many real time applications of machine learning as compared to SciPy.

Matplotlib

This is a machine learning library that has an extensive collection of plots and charts. This library is a collection of many other packages. Of them, Seaborn is the most popular and is widely used to work on data structures.

PyTorch and Keras

These are known for their usage in Deep learning.

  • PyTorch library is extensively used for Deep Learning. It is known for its amazingly speedy calculations and is very popular among deep learning programmers.
  • Keras uses other libraries such as Tensor flow and is apt for developing neural networks.

Tools and Libraries of Machine Learning

Machine Learning – Processes

Besides algorithms, machine learning offers many tools and processes to pair best with big data. Various such processes and tools that are at hand for developers are:

  • Data quality and management
  • GUIs that ease models and process flows
  • Data exploration in an interactive mode
  • Visualized outputs for models
  • Choosing the best learning model by comparison
  • Model evaluation done automatically that identifies the best performers
  • User friendly model deployment and data-to-decision process

Machine Learning Use Cases

Here is a list of five use cases that are based on machine learning:

  • PayPal: The online money transfers giant uses machine learning for detecting any suspicious activities related to financial transactions.
  • Amazon: The company’s Alexa, the digital assistant, is the best example of speech processing application of machine learning. The online retailing giant is also using machine learning to display recommendation to its customers.
  • Facebook: The social media company is using machine learning extensively to filter out spam posts and forwards, and to shred out poor quality content.
  • IBM: The company’s self-driven vehicle uses machine learning in taking a decision whether to give the driving control to a human or computer.
  • Kaspersky: The anti-virus manufacturing company is using machine learning to detect security breaches, or unknown malware threats and also for high quality endpoint security for businesses.

Which Industries Use Machine Learning?

As we have seen just now, machine learning is being adopted in many industries for the potential advantages it offers. Machine learning can be applied to any industry that deals with huge volumes of data, and which has many challenges to be answered. For instance, machine learning has been found to be extremely useful to organizations in the following domains which are  making the best use of the technology:

Pharmaceuticals

Pharma industry spends billions of dollars on drug design and testing every year across the globe. Machine learning helps in cutting down such costs and to obtain results with accuracy just by entering the entire data of the drugs and their chemical compounds and comparing with various other parameters.

Banks and Financial Services

This industry has two major needs to be addressed: attracting investor attention and increasing investments, and staying alert and preventing financial frauds and cyber threats. Machine learning does these two major tasks with ease and accuracy.

Health Care and Treatments

By predicting the possible  diseases that could affect a patient, based on the medical, genetic and lifestyle data, machine learning helps patients stay alert to probable health threats that they may encounter. Wearable smart devices are an example of the machine learning applications in health care.

Online Sales

Companies study the patterns that online shoppers are adopting through machine learning and use the results to display related ads, offers and discounts. Personalisation of internet shopping experience, merchandise supply panning and marketing campaigns are all based on the outcomes of machine learning results themselves.

Mining, Oil and Gas

Machine learning helps in predicting accurately the best location of availability of minerals, gas, oil and other such natural resources, which would otherwise need huge investments, manpower and time.

Government Schemes

Many governments are taking the help of machine learning to study the interests and needs of their people. They are accordingly using the results in plans and schemes, both for the betterment of people and optimum usage of financial resources.

Space Exploration and Science Studies

Machine learning greatly helps in studying stars, planets and finding out the secrets of other celestial bodies with far lesser investments and manpower. Scientists are also maximising the use of machine learning to discover various fascinating facts about the earth and its components.

Future of Machine Learning

Future of Machine Learning

Currently, machine learning is entering our lives with baby steps. By the next decade, radical changes can be expected in machine learning and the way it impacts our lives. Customers have already started trusting the power and comfort of machine learning, and would definitely welcome more such innovations in the near future.

Gartner says:

Artificial Intelligence and Machine Learning have reached a critical tipping point and will increasingly augment and extend virtually every technology enabled service, thing, or application.

So, it would not be surprising if in the future, machine learning would:

  • Make its entry in almost every aspect of human  life
  • Be omnipresent in business and industries, irrespective of their size
  • Enter  cloud based services
  • Bring drastic changes in CPU design keeping in mind the need for computational efficiency
  • Altogether change the shape of data, its processing and usage
  • Change the way connected systems work and look  owing to the ever increasing data on the internet.

Conclusion

Machine Learning can work wonders

Machine learning is quite different in its own way. While many experts are raising concerns over the ever increasing dependence and presence of machine learning in our everyday lives, on the positive side, machine learning can work wonders. And the world is already witnessing its magic – in health care, finance industry, automotive industry, image processing and voice recognition and many other fields.

While many of us worry that machines may take over the world, it is totally up to us, how we design effective, yet safe and controllable machines. There is no doubt that machine learning would change the way we do many things including education, business and health services making the world a safer and better place.

Animikh

Animikh Aich

Computer Vision Engineer

Animikh Aich is a Deep Learning enthusiast, currently working as a Computer Vision Engineer. His work includes three International Conference publications and several projects based on Computer Vision and Machine Learning.

Join the Discussion

Your email address will not be published. Required fields are marked *

3 comments

vintage House restaurant 09 May 2019

Greetings! Very helpful advice within this article! It's the little changes that produce the greatest changes. Thanks a lot for sharing!

Aditya 21 Jun 2019

Excellent web site difficult to find high quality writing like yours nowadays,I honestly appreciate people like you! Take care

amith singh 06 Aug 2019

Hi, I read the complete blog and got full details of machine learning. It has been presented in such a way that anyone from a development background can understand easily. Thank you for the wonderful blog. Thank you Knowledgehut!

Suggested Blogs

Top Data Analytics Certifications

What is data analytics?In the world of IT, every small bit of data count; even information that looks like pure nonsense has its significance. So, how do we retrieve the significance from this data? This is where Data Science and analytics comes into the picture.  Data Analytics is a process where data is inspected, transformed and interpreted to discover some useful bits of information from all the noise and make decisions accordingly. It forms the entire basis of the social media industry and finds a lot of use in IT, finance, hospitality and even social sciences. The scope in data analytics is nearly endless since all facets of life deal with the storage, processing and interpretation of data.Why data analytics? Data Analytics in this Information Age has nearly endless opportunities since literally everything in this era hinges on the importance of proper processing and data analysis. The insights from any data are crucial for any business. The field of data Analytics has grown more than 50 times from the early 2000s to 2021. Companies specialising in banking, healthcare, fraud detection, e-commerce, telecommunication, infrastructure and risk management hire data analysts and professionals every year in huge numbers.Need for certification:Skills are the first and foremost criteria for a job, but these skills need to be validated and recognised by reputed organisations for them to impress a potential employer. In the field of Data Analytics, it is pretty crucial to show your certifications. Hence, an employer knows you have hands-on experience in the field and can handle the workload of a real-world setting beyond just theoretical knowledge. Once you get a base certification, you can work your way up to higher and higher positions and enjoy lucrative pay packages. Top Data Analytics Certifications Certified Analytics Professional (CAP) Microsoft Certified Azure Data Scientist Associate Cloudera Certified Associate (CCA) Data Analyst Associate Certified Analytics Professional (aCAP) SAS Certified Data Analyst (Using SAS91. Certified Analytics Professional (CAP)A certification from an organisation called INFORMS, CAP is a notoriously rigorous certification and stands out like a star on an applicant's resume. Those who complete this program gain an invaluable credential and are able to distinguish themselves from the competition. It gives a candidate a comprehensive understanding of the analytical process's various fine aspects--from framing hypotheses and analytic problems to the proper methodology, along with acquisition, model building and deployment process with long-term life cycle management. It needs to be renewed after three years.The application process is in itself quite complex, and it also involves signing the CAP Code of Ethics before one is given the certification. The CAP panel reviews each application, and those who pass this review are the only ones who can give the exam.  Prerequisite: A bachelor’s degree with 5 years of professional experience or a master's degree with 3 years of professional experience.  Exam Fee & Format: The base price is $695. For individuals who are members of INFORMS the price is $495. (Source) The pass percentage is 70%. The format is a four option MCQ paper. Salary: $76808 per year (Source) 2. Cloudera Certified Associate (CCA) Data Analyst Cloudera has a well-earned reputation in the IT sector, and its Associate Data analyst certification can help bolster the resume of Business intelligence specialists, system architects, data analysts, database administrators as well as developers. It has a specific focus on SQL developers who aim to show their proficiency on the platform.This certificate validates an applicant's ability to operate in a CDH environment by Cloudera using Impala and Hive tools. One doesn't need to turn to expensive tuitions and academies as Cloudera offers an Analyst Training course with almost the same objectives as the exam, leaving one with a good grasp of the fundamentals.   Prerequisites: basic knowledge of SQL and Linux Command line Exam Fee & Format: The cost of the exam is $295 (Source), The test is a performance-based test containing 8-12 questions to be completed in a proctored environment under 129 minutes.  Expected Salary: You can earn the job title of Cloudera Data Analyst that pays up to $113,286 per year. (Source)3. Associate Certified Analytics Professional (aCAP)aCAP is an entry-level certification for Analytics professionals with lesser experience but effective knowledge, which helps in real-life situations. It is for those candidates who have a master’s degree in a field related to data analytics.  It is one of the few vendor-neutral certifications on the list and must be converted to CAP within 6 years, so it offers a good opportunity for those with a long term path in a Data Analytics career. It also needs to be renewed every three years, like the CAP certification. Like its professional counterpart, aCAP helps a candidate step out in a vendor-neutral manner and drastically increases their professional credibility.  Prerequisite: Master’s degree in any discipline related to data Analytics. Exam Fee: The base price is $300. For individuals who are members of INFORMS the price is $200. (Source). There is an extensive syllabus which covers: i. Business Problem Framing, ii. Analytics Problem Framing, iii. Data, iv. Methodology Selection, v. Model Building, vi. Deployment, vii. Lifecycle Management of the Analytics process, problem-solving, data science and visualisation and much more.4. SAS Certified Data Analyst (Using SAS9)From one of the pioneers in IT and Statistics - the SAS Institute of Data Management - a SAS Certified Data Scientist can gain insights and analyse various aspects of data from businesses using tools like the SAS software and other open-source methodology. It also validates competency in using complex machine learning models and inferring results to interpret future business strategy and release models using the SAS environment. SAS Academy for Data Science is a viable institute for those who want to receive proper training for the exam and use this as a basis for their career.  Prerequisites: To earn this credential, one needs to pass 5 exams, two from the SAS Certified Big Data Professional credential and three exams from the SAS Certified Advanced Analytics Professional Credential. Exam Fee: The cost for each exam is $180. (Source) An exception is Predictive Modelling using the SAS Enterprise Miner, costing $250, This exam can be taken in the English language. One can join the SAS Academy for Data Science and also take a practice exam beforehand. Salary: You can get a job as a SAS Data Analyst that pays up to $90,000 per year! (Source) 5. IBM Data Science Professional CertificateWhenever someone studies the history of a computer, IBM (International Business Machines) is the first brand that comes up. IBM is still alive and kicking, now having forayed into and becoming a major player in the Big Data segment. The IBM Data Science Professional certificate is one of the beginner-level certificates if you want to sink your hands into the world of data analysis. It shows a candidate's skills in various topics pertaining to data sciences, including various open-source tools, Python databases, SWL, data visualisation, and data methodologies.  One needs to complete nine courses to earn the certificate. It takes around three months if one works twelve hours per week. It also involves the completion of various hands-on assignments and building a portfolio. A candidate earns the Professional certificate from Coursera and a badge from IBM that recognises a candidate's proficiency in the area. Prerequisites: It is the optimal course for freshers since it requires no requisite programming knowledge or proficiency in Analytics. Exam Fee: It costs $39 per month (Source) to access the course materials and the certificate. The course is handled by the Coursera organisation. Expected Salary: This certification can earn you the title of IBM Data Scientist and help you earn a salary of $134,846 per annum. (Source) 6. Microsoft Certified Azure Data Scientist AssociateIt's one of the most well-known certifications for newcomers to step into the field of Big Data and Data analytics. This credential is offered by the leader in the industry, Microsoft Azure. This credential validates a candidate's ability to work with Microsoft Azure developing environment and proficiency in analysing big data, preparing data for the modelling process, and then progressing to designing models. One advantage of this credential is that it has no expiry date and does not need renewal; it also authorises the candidate’s extensive knowledge in predictive Analytics. Prerequisites: knowledge and experience in data science and using Azure Machine Learning and Azure Databricks. Exam Fee: It costs $165 to (Source) register for the exam. One advantage is that there is no need to attend proxy institutions to prepare for this exam, as Microsoft offers free training materials as well as an instructor-led course that is paid. There is a comprehensive collection of resources available to a candidate. Expected Salary: The job title typically offered is Microsoft Data Scientist and it typically fetches a yearly pay of $130,993.(Source) Why be a Data Analytics professional? For those already working in the field of data, being a Data Analyst is one of the most viable options. The salary of a data analyst ranges from $65,000 to $85,000 depending on number of years of experience. This lucrative salary makes it worth the investment to get a certification and advance your skills to the next level so that you can work for multinational companies by interpreting and organising data and using this analysis to accelerate businesses. These certificates demonstrate that you have the required knowledge needed to operate data models of the volumes needed by big organizations. 1. Demand is more than supply With the advent of the Information Age, there has been a huge boom in companies that either entirely or partially deal with IT. For many companies IT forms the core of their business. Every business has to deal with data, and it is crucial to get accurate insights from this data and use it to further business interests and expand profits. The interpretation of data also aims to guide them in the future to make the best business decisions.  Complex business intelligence algorithms are in place these days. They need trained professionals to operate them; since this field is relatively new, there is a shortage of experts. Thus, there are vacancies for data analyst positions with lucrative pay if one is qualified enough.2. Good pay with benefitsA data analyst is an extremely lucrative profession, with an average base pay of $71,909 (Source), employee benefits, a good work-home balance, and other perks. It has been consistently rated as being among the hottest careers of the decade and allows professionals to have a long and satisfying career.   Companies Hiring Certified Data Analytics Professionals Oracle A California based brand, Oracle is a software company that is most famous for its data solutions. With over 130000 employees and a revenue of 39 billion, it is surely one of the bigger players in Data Analytics.  MicroStrategy   Unlike its name, this company is anything but micro, with more than 400 million worth of revenue. It provides a suite of analytical products along with business mobility solutions. It is a key player in the mobile space, working natively with Android and iOS.   SAS   One of the companies in the list which provides certifications and is also without a doubt one of the largest names in the field of Big Data, machine learning and Data Analytics, is SAS. The name SAS is derived from Statistical Analysis System. This company is trusted and has a solid reputation. It is also behind the SAS Institute for Data Science. Hence, SAS is the organisation you would want to go to if you're aiming for a long-term career in data science.    Conclusion To conclude, big data and data Analytics are a field of endless opportunities. By investing in the right credential, one can pave the way to a viable and lucrative career path. Beware though, there are lots of companies that provide certifications, but only recognised and reputed credentials will give you the opportunities you are seeking. Hiring companies look for these certifications as a mark of authenticity of your hands-on experience and the amount of work you can handle effectively. Therefore, the credential you choose for yourself plays a vital role in the career you can have in the field of Data analytics.  Happy learning!    
5631
Top Data Analytics Certifications

What is data analytics?In the world of IT, every s... Read More

Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology you would have heard of machine learning. In fact machine learning is now a buzzword and there are dozens of articles and research papers dedicated to it.  Machine learning is a technique which makes the machine learn from past experiences. Complex domain problems can be resolved quickly and efficiently using Machine Learning techniques.  We are living in an age where huge amounts of data are produced every second. This explosion of data has led to creation of machine learning models which can be used to analyse data and to benefit businesses.  This article tries to answer a few important concepts related to Machine Learning and informs you about the career path in this prestigious and important domain.What is Machine Learning?So, here’s your introduction to Machine Learning. This term was coined in the year 1997. “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at the tasks improves with the experiences.”, as defined in the book on ML written by Mitchell in 1997. The difference between a traditional programming and programming using Machine Learning is depicted here, the first Approach (a) is a traditional approach, and second approach (b) is a Machine Learning based approach.Machine Learning encompasses the techniques in AI which allow the system to learn automatically looking at the data available. While learning, the system tries to improve the experience without making any explicit efforts in programming. Any machine learning application follows the following steps broadlySelecting the training datasetAs the definition indicates, machine learning algorithms require past experience, that is data, for learning. So, selection of appropriate data is the key for any machine learning application.Preparing the dataset by preprocessing the dataOnce the decision about the data is made, it needs to be prepared for use. Machine learning algorithms are very susceptible to the small changes in data. To get the right insights, data must be preprocessed which includes data cleaning and data transformation.  Exploring the basic statistics and properties of dataTo understand what the data wishes to convey, the data engineer or Machine Learning engineer needs to understand the properties of data in detail. These details are understood by studying the statistical properties of data. Visualization is an important process to understand the data in detail.Selecting the appropriate algorithm to apply on the datasetOnce the data is ready and understood in detail, then appropriate Machine Learning algorithms or models are selected. The choice of algorithm depends on characteristics of data as well as type of task to be performed on the data. The choice also depends on what kind of output is required from the data.Checking the performance and fine-tuning the parameters of the algorithmThe model or algorithm chosen is fine-tuned to get improved performance. If multiple models are applied, then they are weighed against the performance. The final algorithm is again fine-tuned to get appropriate output and performance.Why Pursue a Career in Machine Learning in 2021?A recent survey has estimated that the jobs in AI and ML have grown by more than 300%. Even before the pandemic struck, Machine Learning skills were in high demand and the demand is expected to increase two-fold in the near future.A career in machine learning gives you the opportunity to make significant contributions in AI, the future of technology. All the big and small businesses are adopting Machine Learning models to improve their bottom-line margins and return on investment.  The use of Machine Learning has gone beyond just technology and it is now used in diverse industries including healthcare, automobile, manufacturing, government and more. This has greatly enhanced the value of Machine Learning experts who can earn an average salary of $112,000.  Huge numbers of jobs are expected to be created in the coming years.  Here are a few reasons why one should pursue a career in Machine Learning:The global machine learning market is expected to touch $20.83B in 2024, according to Forbes.  We are living in a digital age and this explosion of data has made the use of machine learning models a necessity. Machine Learning is the only way to extract meaning out of data and businesses need Machine Learning engineers to analyze huge data and gain insights from them to improve their businesses.If you like numbers, if you like research, if you like to read and test and if you have a passion to analyse, then machine learning is the career for you. Learning the right tools and programming languages will help you use machine learning to provide appropriate solutions to complex problems, overcome challenges and grow the business.Machine Learning is a great career option for those interested in computer science and mathematics. They can come up with new Machine Learning algorithms and techniques to cater to the needs of various business domains.As explained above, a career in machine learning is both rewarding and lucrative. There are huge number of opportunities available if you have the right expertise and knowledge. On an average, Machine Learning engineers get higher salaries, than other software developers.Years of experience in the Machine Learning domain, helps you break into data scientist roles, which is not just among the hottest careers of our generation but also a highly respected and lucrative career. Right skills in the right business domain helps you progress and make a mark for yourself in your organization. For example, if you have expertise in pharmaceutical industries and experience working in Machine learning, then you may land job roles as a data scientist consultant in big pharmaceutical companies.Statistics on Machine learning growth and the industries that use MLAccording to a research paper in AI Multiple (https://research.aimultiple.com/ml-stats/), the Machine Learning market will grow to 9 Billion USD by the end of 2022. There are various areas where Machine Learning models and solutions are getting deployed, and businesses see an overall increase of 44% investments in this area. North America is one of the leading regions in the adoption of Machine Learning followed by Asia.The Global Machine Learning market will grow by 42% which is evident from the following graph. Image sourceThere is a huge demand for Machine Learning modelling because of the large use of Cloud Based Applications and Services. The pandemic has changed the face of businesses, making them heavily dependent on Cloud and AI based services. Google, IBM, and Amazon are just some of the companies that have invested heavily in AI and Machine Learning based application development, to provide robust solutions for problems faced by small to large scale businesses. Machine Learning and Cloud based solutions are scalable and secure for all types of business.ML analyses and interprets data patterns, computing and developing algorithms for various business purposes.Advantages of Machine Learning courseNow that we have established the advantages of perusing a career in Machine Learning, let’s understand from where to start our machine learning journey. The best option would be to start with a Machine Learning course. There are various platforms which offer popular Machine Learning courses. One can always start with an online course which is both effective and safe in these COVID times.These courses start with an introduction to Machine Learning and then slowly help you to build your skills in the domain. Many courses even start with the basics of programming languages such as Python, which are important for building Machine Learning models. Courses from reputed institutions will hand hold you through the basics. Once the basics are clear, you may switch to an offline course and get the required certification.Online certifications have the same value as offline classes. They are a great way to clear your doubts and get personalized help to grow your knowledge. These courses can be completed along with your normal job or education, as most are self-paced and can be taken at a time of your convenience. There are plenty of online blogs and articles to aid you in completion of your certification.Machine Learning courses include many real time case studies which help you in understanding the basics and application aspects. Learning and applying are both important and are covered in good Machine Learning Courses. So, do your research and pick an online tutorial that is from a reputable institute.What Does the Career Path in Machine Learning Look Like?One can start their career in Machine Learning domain as a developer or application programmer. But the acquisition of the right skills and experience can lead you to various career paths. Following are some of the career options in Machine Learning (not an exhaustive list):Data ScientistA data scientist is a person with rich experience in a particular business field. A person who has a knowledge of domain, as well as machine learning modelling, is a data scientist. Data Scientists’ job is to study the data carefully and suggest accurate models to improve the business.AI and Machine Learning EngineerAn AI engineer is responsible for choosing the proper Machine Learning Algorithm based on natural language processing and neural network. They are responsible for applying it in AI applications like personalized advertising.  A Machine Learning Engineer is responsible for creating the appropriate models for improvement of the businessData EngineerA Data Engineer, as the name suggests, is responsible to collect data and make it ready for the application of Machine Learning models. Identification of the right data and making it ready for extraction of further insights is the main work of a data engineer.Business AnalystA person who studies the business and analyzes the data to get insights from it is a Business Analyst. He or she is responsible for extracting the insights from the data at hand.Business Intelligence (BI) DeveloperA BI developer uses Machine Learning and Data Analytics techniques to work on a large amount of data. Proper representation of data to suit business decisions, using the latest tools for creation of intuitive dashboards is the role of a BI developer.  Human Machine Interface learning engineerCreating tools using machine learning techniques to ease the human machine interaction or automate decisions, is the role of a Human Machine Interface learning engineer. This person helps in generating choices for users to ease their work.Natural Language Processing (NLP) engineer or developerAs the name suggests, this person develops various techniques to process Natural Language constructs. Building applications or systems using machine learning techniques to build Natural Language based applications is their main task. They create multilingual Chatbots for use in websites and other applications.Why are Machine Learning Roles so popular?As mentioned above, the market growth of AI and ML has increased tremendously over the past years. The Machine Learning Techniques are applied in every domain including marketing, sales, product recommendations, brand retention, creating advertising, understanding the sentiments of customer, security, banking and more. Machine learning algorithms are also used in emails to ease the users work. This says a lot, and proves that a career in Machine Learning is in high demand as all businesses are incorporating various machine learning techniques and are improving their business.One can harness this popularity by skilling up with Machine Learning skills. Machine Learning models are now being used by every company, irrespective of their size--small or big, to get insights on their data and use these insights to improve the business. As every company wishes to grow faster, they are deploying more machine learning engineers to get their work done on time. Also, the migration of businesses to Cloud services for better security and scalability, has increased their requirement for more Machine Learning algorithms and models to cater to their needs.Introducing the Machine learning techniques and solutions has brought huge returns for businesses.  Machine Learning solution providers like Google, IBM, Microsoft etc. are investing in human resources for development of Machine Learning models and algorithms. The tools developed by them are popularly used by businesses to get early returns. It has been observed that there is significant increase in patents in Machine Learning domains since the past few years, indicating the quantum of work happening in this domain.Machine Learning SkillsLet’s visit a few important skills one must acquire to work in the domain of Machine Learning.Programming languagesKnowledge of programming is very important for a career in Machine Learning. Languages like Python and R are popularly used to develop applications using Machine Learning models and algorithms. Python, being the simplest and most flexible language, is very popular for AI and Machine Learning applications. These languages provide rich support of libraries for implementation of Machine Learning Algorithms. A person who is good in programming can work very efficiently in this domain.Mathematics and StatisticsThe base for Machine Learning is mathematics and statistics. Statistics applied to data help in understanding it in micro detail. Many machine learning models are based on the probability theory and require knowledge of linear algebra, transformations etc. A good understanding of statistics and probability increases the early adoption to Machine Learning domain.Analytical toolsA plethora of analytical tools are available where machine learning models are already implemented and made available for use. Also, these tools are very good for visualization purposes. Tools like IBM Cognos, PowerBI, Tableue etc are important to pursue a career as a  Machine Learning engineer.Machine Learning Algorithms and librariesTo become a master in this domain, one must master the libraries which are provided with various programming languages. The basic understanding of how machine learning algorithms work and are implemented is crucial.Data Modelling for Machine Learning based systemsData lies at the core of any Machine Learning application. So, modelling the data to suit the application of Machine Learning algorithms is an important task. Data modelling experts are the heart of development teams that develop machine learning based systems. SQL based solutions like Oracle, SQL Server, and NoSQL solutions are important for modelling data required for Machine Learning applications. MongoDB, DynamoDB, Riak are some important NOSQL based solutions available to process unstructured data for Machine Learning applications.Other than these skills, there are two other skills that may prove to be beneficial for those planning on a career in the Machine Learning domain:Natural Language processing techniquesFor E-commerce sites, customer feedback is very important and crucial in determining the roadmap of future products. Many customers give reviews for the products that they have used or give suggestions for improvement. These feedbacks and opinions are analyzed to gain more insights about the customers buying habits as well as about the products. This is part of natural language processing using Machine Learning. The likes of Google, Facebook, Twitter are developing machine learning algorithms for Natural Language Processing and are constantly working on improving their solutions. Knowledge of basics of Natural Language Processing techniques and libraries is must in the domain of Machine Learning.Image ProcessingKnowledge of Image and Video processing is very crucial when a solution is required to be developed in the area of security, weather forecasting, crop prediction etc. Machine Learning based solutions are very effective in these domains. Tools like Matlab, Octave, OpenCV are some important tools available to develop Machine Learning based solutions which require image or video processing.ConclusionMachine Learning is a technique to automate the tasks based on past experiences. This is among the most lucrative career choices right now and will continue to remain so in the future. Job opportunities are increasing day by day in this domain. Acquiring the right skills by opting for a proper Machine Learning course is important to grow in this domain. You can have an impressive career trajectory as a machine learning expert, provided you have the right skills and expertise.
5683
Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology ... Read More

Types of Probability Distributions Every Data Science Expert Should know

Data Science has become one of the most popular interdisciplinary fields. It uses scientific approaches, methods, algorithms, and operations to obtain facts and insights from unstructured, semi-structured, and structured datasets. Organizations use these collected facts and insights for efficient production, business growth, and to predict user requirements. Probability distribution plays a significant role in performing data analysis equipping a dataset for training a model. In this article, you will learn about the types of Probability Distribution, random variables, types of discrete distributions, and continuous distribution.  What is Probability Distribution? A Probability Distribution is a statistical method that determines all the probable values and possibilities that a random variable can deliver from a particular range. This range of values will have a lower bound and an upper bound, which we call the minimum and the maximum possible values.  Various factors on which plotting of a value depends are standard deviation, mean (or average), skewness, and kurtosis. All of these play a significant role in Data science as well. We can use probability distribution in physics, engineering, finance, data analysis, machine learning, etc. Significance of Probability distributions in Data Science In a way, most of the data science and machine learning operations are dependent on several assumptions about the probability of your data. Probability distribution allows a skilled data analyst to recognize and comprehend patterns from large data sets; that is, otherwise, entirely random variables and values. Thus, it makes probability distribution a toolkit based on which we can summarize a large data set. The density function and distribution techniques can also help in plotting data, thus supporting data analysts to visualize data and extract meaning. General Properties of Probability Distributions Probability distribution determines the likelihood of any outcome. The mathematical expression takes a specific value of x and shows the possibility of a random variable with p(x). Some general properties of the probability distribution are – The total of all probabilities for any possible value becomes equal to 1. In a probability distribution, the possibility of finding any specific value or a range of values must lie between 0 and 1. Probability distributions tell us the dispersal of the values from the random variable. Consequently, the type of variable also helps determine the type of probability distribution.Common Data Types Before jumping directly into explaining the different probability distributions, let us first understand the different types of probability distributions or the main categories of the probability distribution. Data analysts and data engineers have to deal with a broad spectrum of data, such as text, numerical, image, audio, voice, and many more. Each of these have a specific means to be represented and analyzed. Data in a probability distribution can either be discrete or continuous. Numerical data especially takes one of the two forms. Discrete data: They take specific values where the outcome of the data remains fixed. Like, for example, the consequence of rolling two dice or the number of overs in a T-20 match. In the first case, the result lies between 2 and 12. In the second case, the event will be less than 20. Different types of discrete distributions that use discrete data are: Binomial Distribution Hypergeometric Distribution Geometric Distribution Poisson Distribution Negative Binomial Distribution Multinomial Distribution  Continuous data: It can obtain any value irrespective of bound or limit. Example: weight, height, any trigonometric value, age, etc. Different types of continuous distributions that use continuous data are: Beta distribution Cauchy distribution Exponential distribution Gamma distribution Logistic distribution Weibull distribution Types of Probability Distribution explained Here are some of the popular types of Probability distributions used by data science professionals. (Try all the code using Jupyter Notebook) Normal Distribution: It is also known as Gaussian distribution. It is one of the simplest types of continuous distribution. This probability distribution is symmetrical around its mean value. It also shows that data at close proximity of the mean is frequently occurring, compared to data that is away from it. Here, mean = 0, variance = finite valueHere, you can see 0 at the center is the Normal Distribution for different mean and variance values. Here is a code example showing the use of Normal Distribution: from scipy.stats import norm  import matplotlib.pyplot as mpl  import numpy as np  def normalDist() -> None:      fig, ax = mpl.subplots(1, 1)      mean, var, skew, kurt = norm.stats(moments = 'mvsk')      x = np.linspace(norm.ppf(0.01),  norm.ppf(0.99), 100)      ax.plot(x, norm.pdf(x),          'r-', lw = 5, alpha = 0.6, label = 'norm pdf')      ax.plot(x, norm.cdf(x),          'b-', lw = 5, alpha = 0.6, label = 'norm cdf')      vals = norm.ppf([0.001, 0.5, 0.999])      np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))      r = norm.rvs(size = 1000)      ax.hist(r, normed = True, histtype = 'stepfilled', alpha = 0.2)      ax.legend(loc = 'best', frameon = False)      mpl.show()  normalDist() Output: Bernoulli Distribution: It is the simplest type of probability distribution. It is a particular case of Binomial distribution, where n=1. It means a binomial distribution takes 'n' number of trials, where n > 1 whereas, the Bernoulli distribution takes only a single trial.   Probability Mass Function of a Bernoulli’s Distribution is:  where p = probability of success and q = probability of failureHere is a code example showing the use of Bernoulli Distribution: from scipy.stats import bernoulli  import seaborn as sb    def bernoulliDist():      data_bern = bernoulli.rvs(size=1200, p = 0.7)      ax = sb.distplot(          data_bern,           kde = True,           color = 'g',           hist_kws = {'alpha' : 1},          kde_kws = {'color': 'y', 'lw': 3, 'label': 'KDE'})      ax.set(xlabel = 'Bernouli Values', ylabel = 'Frequency Distribution')  bernoulliDist() Output:Continuous Uniform Distribution: In this type of continuous distribution, all outcomes are equally possible; each variable gets the same probability of hit as a consequence. This symmetric probabilistic distribution has random variables at an equal interval, with the probability of 1/(b-a). Here is a code example showing the use of Uniform Distribution: from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def uniformDist():      sb.distplot(random.uniform(size = 1200), hist = True)      mpl.show()  uniformDist() Output: Log-Normal Distribution: A Log-Normal distribution is another type of continuous distribution of logarithmic values that form a normal distribution. We can transform a log-normal distribution into a normal distribution. Here is a code example showing the use of Log-Normal Distribution import matplotlib.pyplot as mpl  def lognormalDist():      muu, sig = 3, 1      s = np.random.lognormal(muu, sig, 1000)      cnt, bins, ignored = mpl.hist(s, 80, normed = True, align ='mid', color = 'y')      x = np.linspace(min(bins), max(bins), 10000)      calc = (np.exp( -(np.log(x) - muu) **2 / (2 * sig**2))             / (x * sig * np.sqrt(2 * np.pi)))      mpl.plot(x, calc, linewidth = 2.5, color = 'g')      mpl.axis('tight')      mpl.show()  lognormalDist() Output: Pareto Distribution: It is one of the most critical types of continuous distribution. The Pareto Distribution is a skewed statistical distribution that uses power-law to describe quality control, scientific, social, geophysical, actuarial, and many other types of observable phenomena. The distribution shows slow or heavy-decaying tails in the plot, where much of the data reside at its extreme end. Here is a code example showing the use of Pareto Distribution – import numpy as np  from matplotlib import pyplot as plt  from scipy.stats import pareto  def paretoDist():      xm = 1.5        alp = [2, 4, 6]       x = np.linspace(0, 4, 800)      output = np.array([pareto.pdf(x, scale = xm, b = a) for a in alp])      plt.plot(x, output.T)      plt.show()  paretoDist() Output:Exponential Distribution: It is a type of continuous distribution that determines the time elapsed between events (in a Poisson process). Let’s suppose, that you have the Poisson distribution model that holds the number of events happening in a given period. We can model the time between each birth using an exponential distribution.Here is a code example showing the use of Pareto Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def expDist():      sb.distplot(random.exponential(size = 1200), hist = True)      mpl.show()   expDist()Output:Types of the Discrete probability distribution – There are various types of Discrete Probability Distribution a Data science aspirant should know about. Some of them are – Binomial Distribution: It is one of the popular discrete distributions that determine the probability of x success in the 'n' trial. We can use Binomial distribution in situations where we want to extract the probability of SUCCESS or FAILURE from an experiment or survey which went through multiple repetitions. A Binomial distribution holds a fixed number of trials. Also, a binomial event should be independent, and the probability of obtaining failure or success should remain the same. Here is a code example showing the use of Binomial Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb    def binomialDist():      sb.distplot(random.normal(loc = 50, scale = 6, size = 1200), hist = False, label = 'normal')      sb.distplot(random.binomial(n = 100, p = 0.6, size = 1200), hist = False, label = 'binomial')      plt.show()    binomialDist() Output:Geometric Distribution: The geometric probability distribution is one of the crucial types of continuous distributions that determine the probability of any event having likelihood ‘p’ and will happen (occur) after 'n' number of Bernoulli trials. Here 'n' is a discrete random variable. In this distribution, the experiment goes on until we encounter either a success or a failure. The experiment does not depend on the number of trials. Here is a code example showing the use of Geometric Distribution – import matplotlib.pyplot as mpl  def probability_to_occur_at(attempt, probability):      return (1-p)**(attempt - 1) * probability  p = 0.3  attempt = 4  attempts_to_show = range(21)[1:]  print('Possibility that this event will occur on the 7th try: ', probability_to_occur_at(attempt, p))  mpl.xlabel('Number of Trials')  mpl.ylabel('Probability of the Event')  barlist = mpl.bar(attempts_to_show, height=[probability_to_occur_at(x, p) for x in attempts_to_show], tick_label=attempts_to_show)  barlist[attempt].set_color('g')  mpl.show() Output:Poisson Distribution: Poisson distribution is one of the popular types of discrete distribution that shows how many times an event has the possibility of occurrence in a specific set of time. We can obtain this by limiting the Bernoulli distribution from 0 to infinity. Data analysts often use the Poisson distributions to comprehend independent events occurring at a steady rate in a given time interval. Here is a code example showing the use of Poisson Distribution from scipy.stats import poisson  import seaborn as sb  import numpy as np  import matplotlib.pyplot as mpl  def poissonDist():       mpl.figure(figsize = (10, 10))      data_binom = poisson.rvs(mu = 3, size = 5000)      ax = sb.distplot(data_binom, kde=True, color = 'g',                       bins=np.arange(data_binom.min(), data_binom.max() + 1),                       kde_kws={'color': 'y', 'lw': 4, 'label': 'KDE'})      ax.set(xlabel = 'Poisson Distribution', ylabel='Data Frequency')      mpl.show()      poissonDist() Output:Multinomial Distribution: A multinomial distribution is another popular type of discrete probability distribution that calculates the outcome of an event having two or more variables. The term multi means more than one. The Binomial distribution is a particular type of multinomial distribution with two possible outcomes - true/false or heads/tails. Here is a code example showing the use of Multinomial Distribution – import numpy as np  import matplotlib.pyplot as mpl  np.random.seed(99)   n = 12                      pvalue = [0.3, 0.46, 0.22]     s = []  p = []     for size in np.logspace(2, 3):      outcomes = np.random.multinomial(n, pvalue, size=int(size))        prob = sum((outcomes[:,0] == 7) & (outcomes[:,1] == 2) & (outcomes[:,2] == 3))/len(outcomes)      p.append(prob)      s.append(int(size))  fig1 = mpl.figure()  mpl.plot(s, p, 'o-')  mpl.plot(s, [0.0248]*len(s), '--r')  mpl.grid()  mpl.xlim(xmin = 0)  mpl.xlabel('Number of Events')  mpl.ylabel('Function p(X = K)') Output:Negative Binomial Distribution: It is also a type of discrete probability distribution for random variables having negative binomial events. It is also known as the Pascal distribution, where the random variable tells us the number of repeated trials produced during a specific number of experiments.  Here is a code example showing the use of Negative Binomial Distribution – import matplotlib.pyplot as mpl   import numpy as np   from scipy.stats import nbinom    x = np.linspace(0, 6, 70)   gr, kr = 0.3, 0.7        g = nbinom.ppf(x, gr, kr)   s = nbinom.pmf(x, gr, kr)   mpl.plot(x, g, "*", x, s, "r--") Output: Apart from these mentioned distribution types, various other types of probability distributions exist that data science professionals can use to extract reliable datasets. In the next topic, we will understand some interconnections & relationships between various types of probability distributions. Relationship between various Probability distributions – It is surprising to see that different types of probability distributions are interconnected. In the chart shown below, the dashed line is for limited connections between two families of distribution, whereas the solid lines show the exact relationship between them in terms of transformation, variable, type, etc. Conclusion  Probability distributions are prevalent among data analysts and data science professionals because of their wide usage. Today, companies and enterprises hire data science professionals in many sectors, namely, computer science, health, insurance, engineering, and even social science, where probability distributions appear as fundamental tools for application. It is essential for Data analysts and data scientists. to know the core of statistics. Probability Distributions perform a requisite role in analyzing data and cooking a dataset to train the algorithms efficiently. If you want to learn more about data science - particularly probability distributions and their uses, check out KnowledgeHut's comprehensive Data science course. 
9688
Types of Probability Distributions Every Data Scie...

Data Science has become one of the most popular in... Read More

Useful links