Search

Machine learning Filter

Bagging and Random Forest in Machine Learning

In today’s world, innovations happen on a daily basis, rendering all the previous versions of that product, service or skill-set outdated and obsolete. In such a dynamic and chaotic space, how can we make an informed decision without getting carried away by plain hype? To make the right decisions, we must follow a set of processes; investigate the current scenario, chart down your expectations, collect reviews from others, explore your options, select the best solution after weighing the pros and cons, make a decision and take the requisite action. For example, if you are looking to purchase a computer, will you simply walk up to the store and pick any laptop or notebook? It’s highly unlikely that you would do so. You would probably search on Amazon, browse a few web portals where people have posted their reviews and compare different models, checking for their features, specifications and prices. You will also probably ask your friends and colleagues for their opinion. In short, you would not directly jump to a conclusion, but will instead make a decision considering the opinions and reviews of other people as well. Ensemble models in machine learning also operate on a similar manner. They combine the decisions from multiple models to improve the overall performance. The objective of this article is to introduce the concept of ensemble learning and understand algorithms like bagging and random forest which use a similar technique. What is Ensemble Learning? Ensemble methods aim at improving the predictive performance of a given statistical learning or model fitting technique. The general principle of ensemble methods is to construct a linear combination of some model fitting method, instead of using a single fit of the method. An ensemble is itself a supervised learning algorithm, because it can be trained and then used to make predictions. Ensemble methods combine several decision trees classifiers to produce better predictive performance than a single decision tree classifier. The main principle behind the ensemble model is that a group of weak learners come together to form a strong learner, thus increasing the accuracy of the model.When we try to predict the target variable using any machine learning technique, the main causes of difference in actual and predicted values are noise, variance, and bias. Ensemble helps to reduce these factors (except noise, which is irreducible error). The noise-related error is mainly due to noise in the training data and can't be removed. However, the errors due to bias and variance can be reduced.The total error can be expressed as follows: Total Error = Bias + Variance + Irreducible Error A measure such as mean square error (MSE) captures all of these errors for a continuous target variable and can be represented as follows: Where, E stands for the expected mean, Y represents the actual target values and fˆ(x) is the predicted values for the target variable. It can be broken down into its components such as bias, variance and noise as shown in the following formula: Using techniques like Bagging and Boosting helps to decrease the variance and increase the robustness of the model. Combinations of multiple classifiers decrease variance, especially in the case of unstable classifiers, and may produce a more reliable classification than a single classifier. Ensemble Algorithm The goal of ensemble algorithms is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. There are two families of ensemble methods which are usually distinguished: Averaging methods. The driving principle is to build several estimators independently and then to average their predictions. On average, the combined estimator is usually better than any of the single base estimator because its variance is reduced.|Examples: Bagging methods, Forests of randomized trees. Boosting methods. Base estimators are built sequentially and one tries to reduce the bias of the combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.Examples: AdaBoost, Gradient Tree Boosting.Advantages of Ensemble Algorithm Ensemble is a proven method for improving the accuracy of the model and works in most of the cases. Ensemble makes the model more robust and stable thus ensuring decent performance on the test cases in most scenarios. You can use ensemble to capture linear and simple as well nonlinear complex relationships in the data. This can be done by using two different models and forming an ensemble of two. Disadvantages of Ensemble Algorithm Ensemble reduces the model interpret-ability and makes it very difficult to draw any crucial business insights at the end It is time-consuming and thus might not be the best idea for real-time applications The selection of models for creating an ensemble is an art which is really hard to master Basic Ensemble Techniques Max Voting: Max-voting is one of the simplest ways of combining predictions from multiple machine learning algorithms. Each base model makes a prediction and votes for each sample. The sample class with the highest votes is considered in the final predictive class. It is mainly used for classification problems.  Averaging: Averaging can be used while estimating the probabilities in classification tasks. But it is usually used for regression problems. Predictions are extracted from multiple models and an average of the predictions are used to make the final prediction. Weighted Average: Like averaging, weighted averaging is also used for regression tasks. Alternatively, it can be used while estimating probabilities in classification problems. Base learners are assigned different weights, which represent the importance of each model in the prediction. Ensemble Methods Ensemble methods became popular as a relatively simple device to improve the predictive performance of a base procedure. There are different reasons for this: the bagging procedure turns out to be a variance reduction scheme, at least for some base procedures. On the other hand, boosting methods are primarily reducing the (model) bias of the base procedure. This already indicates that bagging and boosting are very different ensemble methods. From the perspective of prediction, random forests is about as good as boosting, and often better than bagging.  Bootstrap Aggregation or Bagging tries to implement similar learners on small sample populations and then takes a mean of all the predictions. It combines Bootstrapping and Aggregation to form one ensemble model Reduces the variance error and helps to avoid overfitting Bagging algorithms include: Bagging meta-estimator Random forest Boosting refers to a family of algorithms which converts weak learner to strong learners. Boosting is a sequential process, where each subsequent model attempts to correct the errors of the previous model. Boosting is focused on reducing the bias. It makes the boosting algorithms prone to overfitting. To avoid overfitting, parameter tuning plays an important role in boosting algorithms. Some examples of boosting are mentioned below: AdaBoost GBM XGBM Light GBM CatBoost Why use ensemble models? Ensemble models help in improving algorithm accuracy as well as the robustness of a model. Both Bagging and Boosting should be known by data scientists and machine learning engineers and especially people who are planning to attend data science/machine learning interviews. Ensemble learning uses hundreds to thousands of models of the same algorithm and then work hand in hand to find the correct classification. You may also consider the fable of the blind men and the elephant to understand ensemble learning, where each blind man found a feature of the elephant and they all thought it was something different. However, if they would work together and discussed among themselves, they might have figured out what it is. Using techniques like bagging and boosting leads to increased robustness of statistical models and decreased variance. Now the question becomes, between these different “B” words. Which is better? Which is better, Bagging or Boosting? There is no perfectly correct answer to that. It depends on the data, the simulation and the circumstances. Bagging and Boosting decrease the variance of your single estimate as they combine several estimates from different models. So the result may be a model with higher stability. If the problem is that the single model gets a very low performance, Bagging will rarely get a better bias. However, Boosting could generate a combined model with lower errors as it optimizes the advantages and reduces pitfalls of the single model. By contrast, if the difficulty of the single model is overfitting, then Bagging is the best option. Boosting for its part doesn’t help to avoid over-fitting; in fact, this technique is faced with this problem itself. For this reason, Bagging is effective more often than Boosting. In this article we will discuss about Bagging, we will cover Boosting in the next post. But first, let us look into the very important concept of bootstrapping. Bootstrap Sampling Sampling is the process of selecting a subset of observations from the population with the purpose of estimating some parameters about the whole population. Resampling methods, on the other hand, are used to improve the estimates of the population parameters. In machine learning, the bootstrap method refers to random sampling with replacement. This sample is referred to as a resample. This allows the model or algorithm to get a better understanding of the various biases, variances and features that exist in the resample. Taking a sample of the data allows the resample to contain different characteristics then it might have contained as a whole. This is demonstrated in figure 1 where each sample population has different pieces, and none are identical. This would then affect the overall mean, standard deviation and other descriptive metrics of a data set. In turn, it can develop more robust models. Bootstrapping is also great for small size data sets that can have a tendency to overfit. In fact, we recommended this to one company who was concerned because their data sets were far from “Big Data”. Bootstrapping can be a solution in this case because algorithms that utilize bootstrapping can be more robust and handle new data sets depending on the methodology chosen(boosting or bagging). The reason behind using the bootstrap method is because it can test the stability of a solution. By using multiple sample data sets and then testing multiple models, it can increase robustness. Perhaps one sample data set has a larger mean than another, or a different standard deviation. This might break a model that was overfit, and not tested using data sets with different variations. One of the many reasons bootstrapping has become very common is because of the increase in computing power. This allows for many times more permutations to be done with different resamples than previously. Bootstrapping is used in both Bagging and Boosting Let us assume we have a sample of ‘n’ values (x) and we’d like to get an estimate of the mean of the sample. mean(x) = 1/n * sum(x) Consider a sample of 100 values (x) and we’d like to get an estimate of the mean of the sample. We can calculate the mean directly from the sample as: We know that our sample is small and that the mean has an error in it. We can improve the estimate of our mean using the bootstrap procedure: Create many (e.g. 1000) random sub-samples of the data set with replacement (meaning we can select the same value multiple times). Calculate the mean of each sub-sample Calculate the average of all of our collected means and use that as our estimated mean for the data Example: Suppose we used 3 re-samples and got the mean values 2.3, 4.5 and 3.3. Taking the average of these we could take the estimated mean of the data to be 3.367. This process can be used to estimate other quantities like the standard deviation and even quantities used in machine learning algorithms, like learned coefficients. While using Python, we do not have to implement the bootstrap method manually. The scikit-learn library provides an implementation that creates a single bootstrap sample of a dataset. The resample() scikit-learn function can be used for sampling. It takes as arguments the data array, whether or not to sample with replacement, the size of the sample, and the seed for the pseudorandom number generator used prior to the sampling. For example, let us create a bootstrap that creates a sample with replacement with 4 observations and uses a value of 1 for the pseudorandom number generator. boot = resample(data, replace=True, n_samples=4, random_state=1)As the bootstrap API does not allow to easily gather the out-of-bag observations that could be used as a test set to evaluate a fit model, in the univariate case we can gather the out-of-bag observations using a simple Python list comprehension. # out of bag observations  oob = [x for x in data if x not in boot]Let us look at a small example and execute it.# scikit-learn bootstrap  from sklearn.utils import resample  # data sample  data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]  # prepare bootstrap sample  boot = resample(data, replace=True, n_samples=4, random_state=1)  print('Bootstrap Sample: %s' % boot)  # out of bag observations  oob = [x for x in data if x not in boot]  print('OOB Sample: %s' % oob) The output will include the observations in the bootstrap sample and those observations in the out-of-bag sample.Bootstrap Sample: [0.6, 0.4, 0.5, 0.1]  OOB Sample: [0.2, 0.3]Bagging Bootstrap Aggregation, also known as Bagging, is a powerful ensemble method that was proposed by Leo Breiman in 1994 to prevent overfitting. The concept behind bagging is to combine the predictions of several base learners to create a more accurate output. Bagging is the application of the Bootstrap procedure to a high-variance machine learning algorithm, typically decision trees. Suppose there are N observations and M features. A sample from observation is selected randomly with replacement (Bootstrapping). A subset of features are selected to create a model with sample of observations and subset of features. Feature from the subset is selected which gives the best split on the training data. This is repeated to create many models and every model is trained in parallel Prediction is given based on the aggregation of predictions from all the models. This approach can be used with machine learning algorithms that have a high variance, such as decision trees. A separate model is trained on each bootstrap sample of data and the average output of those models used to make predictions. This technique is called bootstrap aggregation or bagging for short. Variance means that an algorithm’s performance is sensitive to the training data, with high variance suggesting that the more the training data is changed, the more the performance of the algorithm will vary. The performance of high variance machine learning algorithms like unpruned decision trees can be improved by training many trees and taking the average of their predictions. Results are often better than a single decision tree. What Bagging does is help reduce variance from models that are might be very accurate, but only on the data they were trained on. This is also known as overfitting. Overfitting is when a function fits the data too well. Typically this is because the actual equation is much too complicated to take into account each data point and outlier. Bagging gets around this by creating its own variance amongst the data by sampling and replacing data while it tests multiple hypothesis(models). In turn, this reduces the noise by utilizing multiple samples that would most likely be made up of data with various attributes(median, average, etc). Once each model has developed a hypothesis. The models use voting for classification or averaging for regression. This is where the “Aggregating” in “Bootstrap Aggregating” comes into play. Each hypothesis has the same weight as all the others. When we later discuss boosting, this is one of the places the two methodologies differ. Essentially, all these models run at the same time, and vote on which hypothesis is the most accurate. This helps to decrease variance i.e. reduce the overfit. Advantages Bagging takes advantage of ensemble learning wherein multiple weak learners outperform a single strong learner.  It helps reduce variance and thus helps us avoid overfitting. Disadvantages There is loss of interpretability of the model. There can possibly be a problem of high bias if not modeled properly. While bagging gives us more accuracy, it is computationally expensive and may not be desirable depending on the use case. There are many bagging algorithms of which perhaps the most prominent would be Random Forest.  Decision Trees Decision trees are simple but intuitive models. Using a top-down approach, a root node creates binary splits unless a particular criteria is fulfilled. This binary splitting of nodes results in a predicted value on the basis of the interior nodes which lead to the terminal or the final nodes. For a classification problem, a decision tree will output a predicted target class for each terminal node produced. We have covered decision tree algorithm  in detail for both classification and regression in another article. Limitations to Decision Trees Decision trees tend to have high variance when they utilize different training and test sets of the same data, since they tend to overfit on training data. This leads to poor performance when new and unseen data is added. This limits the usage of decision trees in predictive modeling. However, using ensemble methods, models that utilize decision trees can be created as a foundation for producing powerful results. Bootstrap Aggregating Trees We have already discussed about bootstrap aggregating (or bagging), we can create an ensemble (forest) of trees where multiple training sets are generated with replacement, meaning data instances. Once the training sets are created, a CART model can be trained on each subsample. Features of Bagged Trees Reduces variance by averaging the ensemble's results. The resulting model uses the entire feature space when considering node splits. Bagging trees allow the trees to grow without pruning, reducing the tree-depth sizes and resulting in high variance but lower bias, which can help improve predictive power. Limitations to Bagging Trees The main limitation of bagging trees is that it uses the entire feature space when creating splits in the trees. Suppose some variables within the feature space are indicating certain predictions, there is a risk of having a forest of correlated trees, which actually  increases bias and reduces variance. Why a Forest is better than One Tree?The main objective of a machine learning model is to generalize properly to new and unseen data. When we have a flexible model, overfitting takes place. A flexible model is said to have high variance because the learned parameters (such as the structure of the decision tree) will vary with the training data. On the other hand, an inflexible model is said to have high bias as it makes assumptions about the training data. An inflexible model may not have the capacity to fit even the training data and in both cases — high variance and high bias — the model is not able to generalize new and unseen data properly. You can through the article on one of the foundational concepts in machine learning, bias-variance tradeoff which will help you understand that the balance between creating a model that is so flexible memorizes the training data and an inflexible model cannot learn the training data.  The main reason why decision tree is prone to overfitting when we do not limit the maximum depth is because it has unlimited flexibility, which means it keeps growing unless there is one leaf node for every single observation. Instead of limiting the depth of the tree which results in reduced variance and increase in bias, we can combine many decision trees into a single ensemble model known as the random forest. What is Random Forest algorithm? Random forest is like bootstrapping algorithm with Decision tree (CART) model. Suppose we have 1000 observations in the complete population with 10 variables. Random forest will try to build multiple CART along with different samples and different initial variables. It will take a random sample of 100 observations and then chose 5 initial variables randomly to build a CART model. It will go on repeating the process say about 10 times and then make a final prediction on each of the observations. Final prediction is a function of each prediction. This final prediction can simply be the mean of each prediction. The random forest is a model made up of many decision trees. Rather than just simply averaging the prediction of trees (which we could call a “forest”), this model uses two key concepts that gives it the name random: Random sampling of training data points when building trees Random subsets of features considered when splitting nodes How the Random Forest Algorithm Works The basic steps involved in performing the random forest algorithm are mentioned below: Pick N random records from the dataset. Build a decision tree based on these N records. Choose the number of trees you want in your algorithm and repeat steps 1 and 2. In case of a regression problem, for a new record, each tree in the forest predicts a value for Y (output). The final value can be calculated by taking the average of all the values predicted by all the trees in the forest. Or, in the case of a classification problem, each tree in the forest predicts the category to which the new record belongs. Finally, the new record is assigned to the category that wins the majority vote. Using Random Forest for Regression Here we have a problem where we have to predict the gas consumption (in millions of gallons) in 48 US states based on petrol tax (in cents), per capita income (dollars), paved highways (in miles) and the proportion of population with the driving license. We will use the random forest algorithm via the Scikit-Learn Python library to solve this regression problem. First we import the necessary libraries and our dataset. import pandas as pd  import numpy as np  dataset = pd.read_csv('/content/petrol_consumption.csv')  dataset.head() Petrol_taxAverage_incomepaved_HighwaysPopulation_Driver_licence(%)Petrol_Consumption09.0357119760.52554119.0409212500.57252429.0386515860.58056137.5487023510.52941448.043994310.544410You will notice that the values in our dataset are not very well scaled. Let us scale them down before training the algorithm. Preparing Data For Training We will perform two tasks in order to prepare the data. Firstly we will divide the data into ‘attributes’ and ‘label’ sets. The resultant will then be divided into training and test sets. X = dataset.iloc[:, 0:4].values  y = dataset.iloc[:, 4].valuesNow let us divide the data into training and testing sets:from sklearn.model_selection import train_test_split  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)Feature Scaling The dataset is not yet a scaled value as you will see that the Average_Income field has values in the range of thousands while Petrol_tax has values in the range of tens. It will be better if we scale our data. We will use Scikit-Learn's StandardScaler class to do the same. # Feature Scaling  from sklearn.preprocessing import StandardScaler  sc = StandardScaler()  X_train = sc.fit_transform(X_train)  X_test = sc.transform(X_test)Training the Algorithm Now that we have scaled our dataset, let us train the random forest algorithm to solve this regression problem. from sklearn.ensemble import Random Forest Regressor  regressor = Random Forest Regressor(n_estimators=20,random_state=0)  regressor.fit(X_train, y_train)  y_pred = regressor.predict(X_test)The RandomForestRegressor is used to solve regression problems via random forest. The most important parameter of the RandomForestRegressor class is the n_estimators parameter. This parameter defines the number of trees in the random forest. Here we started with n_estimator=20 and check the performance of the algorithm. You can find details for all of the parameters of RandomForestRegressor here. Evaluating the Algorithm Let us evaluate the performance of the algorithm. For regression problems the metrics used to evaluate an algorithm are mean absolute error, mean squared error, and root mean squared error.  from sklearn import metrics  print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))  print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))  print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) Mean Absolute Error: 51.76500000000001 Mean Squared Error: 4216.166749999999 Root Mean Squared Error: 64.93201637097064 With 20 trees, the root mean squared error is 64.93 which is greater than 10 percent of the average petrol consumption i.e. 576.77. This may indicate, among other things, that we have not used enough estimators (trees). Let us now change the number of estimators to 200, the results are as follows: Mean Absolute Error: 48.33899999999999 Mean Squared Error: 3494.2330150000003  Root Mean Squared Error: 59.112037818028234 The graph below shows the decrease in the value of the root mean squared error (RMSE) with respect to number of estimators.  You will notice that the error values decrease with the increase in the number of estimators. You may consider 200 a good number for n_estimators as the rate of decrease in error diminishes. You may try playing around with other parameters to figure out a better result. Using Random Forest for ClassificationNow let us consider a classification problem to predict whether a bank currency note is authentic or not based on four attributes i.e. variance of the image wavelet transformed image, skewness, entropy, andkurtosis of the image. We will use Random Forest Classifier to solve this binary classification problem. Let’s get started. import pandas as pd  import numpy as np  dataset = pd.read_csv('/content/bill_authentication.csv')  dataset.head()VarianceSkewnessKurtosisEntropyClass03.621608.6661-2.8073-0.44699014.545908.1674-2.4586-1.46210023.86600-2.63831.92420.10645033.456609.5228-4.0112-3.59440040.32924-4.45524.5718-0.988800Similar to the data we used previously for the regression problem, this data is not scaled. Let us prepare the data for training. Preparing Data For Training The following code divides data into attributes and labels: X = dataset.iloc[:, 0:4].values  y = dataset.iloc[:, 4].values The following code divides data into training and testing sets:from sklearn.model_selection import train_test_split  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) Feature Scaling We will do the same thing as we did for the previous problem. # Feature Scaling  from sklearn.preprocessing import StandardScaler  sc = StandardScaler()  X_train = sc.fit_transform(X_train)  X_test = sc.transform(X_test)Training the Algorithm Now that we have scaled our dataset, let us train the random forest algorithm to solve this classification problem. from sklearn.ensemble import Random Forest Classifier  classifier = RandomForestClassifier(n_estimators=20, random_state=0)  classifier.fit(X_train, y_train)  y_pred = classifier.predict(X_test)For classification, we have used RandomForestClassifier class of the sklearn.ensemble library. It takes n_estimators as a parameter. This parameter defines the number of trees in out random forest. Similar to the regression problem, we have started with 20 trees here. You can find details for all of the parameters of Random Forest Classifier here. Evaluating the Algorithm For evaluating classification problems,  the metrics used are accuracy, confusion matrix, precision recall, and F1 valuesfrom sklearn.metrics import classification_report, confusion_matrix, accuracy_score  print(confusion_matrix(y_test,y_pred))  print(classification_report(y_test,y_pred))  print(accuracy_score(y_test, y_pred)) The output will look something like this: Output:[ [ 155   2] [     1  117] ]Precisionrecallf1-scoresupport00.990.990.9915710.980.990.99118accuracy0.99275macro avg0.990.990.992750.98909090909090910.990.990.99275The accuracy achieved by our random forest classifier with 20 trees is 98.90%. Let us change the number of trees to 200.from sklearn.ensemble import Random Forest Classifier  classifier = Random Forest Classifier(n_estimators=200, random_state=0)  classifier.fit(X_train, y_train)  y_pred = classifier.predict(X_test) Output:[ [ 155   2] [     1  117] ]Precisionrecallf1-scoresupport00.990.990.9915710.980.990.99118accuracy0.99275macro avg0.990.990.992750.98909090909090910.990.990.99275Unlike the regression problem, changing the number of estimators for this problem did not make any difference in the results.An accuracy of 98.9% is pretty good. In this case, we have seen that there is not much improvement if the number of trees are increased. You may try playing around with other parameters of the RandomForestClassifier class and see if you can improve on our results. Advantages and Disadvantages of using Random Forest As with any algorithm, there are advantages and disadvantages to using it. Let us look into the pros and cons of using Random Forest for classification and regression. Advantages Random forest algorithm is unbiased as there are multiple trees and each tree is trained on a subset of data.  Random Forest algorithm is very stable. Introducing a new data in the dataset does not affect much as the new data impacts one tree and is pretty hard to impact all the trees. The random forest algorithm works well when you have both categorical and numerical features. With missing values in the dataset, the random forest algorithm performs very well. Disadvantages A major disadvantage of random forests lies in their complexity. More computational resources are required and also results in the large number of decision trees joined together. Due to their complexity, training time is more compared to other algorithms. Summary In this article we have covered what is ensemble learning and discussed about basic ensemble techniques. We also looked into bootstrap sampling involves iteratively resampling of a dataset with replacement which allows the model or algorithm to get a better understanding various features. Then we moved on to bagging followed by random forest. We also implemented random forest in Python for both regression and classification and came to a conclusion that increasing number of trees or estimators does not always make a difference in a classification problem. However, in regression there is an impact.  We have covered most of the topics related to algorithms in our series of machine learning blogs,click here. If you are inspired by the opportunities provided by machine learning, enrol in our  Data Science and Machine Learning Courses for more lucrative career options in this landscape.Build your own projects using Machine Learning with Python. Practice with our industry experts on our live workshops now.

Bagging and Random Forest in Machine Learning

17806
Bagging and Random Forest in Machine Learning

In today’s world, innovations happen on a daily basis, rendering all the previous versions of that product, service or skill-set outdated and obsolete. In such a dynamic and chaotic space, how can we make an informed decision without getting carried away by plain hype? To make the right decisions, we must follow a set of processes; investigate the current scenario, chart down your expectations, collect reviews from others, explore your options, select the best solution after weighing the pros and cons, make a decision and take the requisite action. 

For example, if you are looking to purchase a computer, will you simply walk up to the store and pick any laptop or notebook? It’s highly unlikely that you would do so. You would probably search on Amazon, browse a few web portals where people have posted their reviews and compare different models, checking for their features, specifications and prices. You will also probably ask your friends and colleagues for their opinion. In short, you would not directly jump to a conclusion, but will instead make a decision considering the opinions and reviews of other people as well. 

Bagging and Random Forest in Machine Learning

Ensemble models in machine learning also operate on a similar manner. They combine the decisions from multiple models to improve the overall performance. The objective of this article is to introduce the concept of ensemble learning and understand algorithms like bagging and random forest which use a similar technique. 

What is Ensemble Learning? 

Ensemble methods aim at improving the predictive performance of a given statistical learning or model fitting technique. The general principle of ensemble methods is to construct a linear combination of some model fitting method, instead of using a single fit of the method. 

An ensemble is itself a supervised learning algorithm, because it can be trained and then used to make predictions. Ensemble methods combine several decision trees classifiers to produce better predictive performance than a single decision tree classifier. The main principle behind the ensemble model is that a group of weak learners come together to form a strong learner, thus increasing the accuracy of the model.When we try to predict the target variable using any machine learning technique, the main causes of difference in actual and predicted values are noise, variance, and bias. Ensemble helps to reduce these factors (except noise, which is irreducible error). The noise-related error is mainly due to noise in the training data and can't be removed. However, the errors due to bias and variance can be reduced.
The total error can be expressed as follows: 

Total Error = Bias + Variance + Irreducible Error 

A measure such as mean square error (MSE) captures all of these errors for a continuous target variable and can be represented as follows: 

Mean square error formula

Where, E stands for the expected mean, Y represents the actual target values and fˆ(x) is the predicted values for the target variable. It can be broken down into its components such as bias, variance and noise as shown in the following formula: 

Bias, variance and Noise Formula

Using techniques like Bagging and Boosting helps to decrease the variance and increase the robustness of the model. Combinations of multiple classifiers decrease variance, especially in the case of unstable classifiers, and may produce a more reliable classification than a single classifier. 

Ensemble Algorithm 

The goal of ensemble algorithms is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. 

Ensemble Algorithm

There are two families of ensemble methods which are usually distinguished: 

  1. Averaging methods. The driving principle is to build several estimators independently and then to average their predictions. On average, the combined estimator is usually better than any of the single base estimator because its variance is reduced.|
    Examples: Bagging methods, Forests of randomized trees. 
  2. Boosting methods. Base estimators are built sequentially and one tries to reduce the bias of the combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.
    Examples: AdaBoost, Gradient Tree Boosting.

Advantages of Ensemble Algorithm 

  • Ensemble is a proven method for improving the accuracy of the model and works in most of the cases. 
  • Ensemble makes the model more robust and stable thus ensuring decent performance on the test cases in most scenarios. 
  • You can use ensemble to capture linear and simple as well nonlinear complex relationships in the data. This can be done by using two different models and forming an ensemble of two. 

Disadvantages of Ensemble Algorithm 

  • Ensemble reduces the model interpret-ability and makes it very difficult to draw any crucial business insights at the end 
  • It is time-consuming and thus might not be the best idea for real-time applications 
  • The selection of models for creating an ensemble is an art which is really hard to master 

Basic Ensemble Techniques 

  • Max Voting: Max-voting is one of the simplest ways of combining predictions from multiple machine learning algorithms. Each base model makes a prediction and votes for each sample. The sample class with the highest votes is considered in the final predictive class. It is mainly used for classification problems.  
  • Averaging: Averaging can be used while estimating the probabilities in classification tasks. But it is usually used for regression problems. Predictions are extracted from multiple models and an average of the predictions are used to make the final prediction. 
  • Weighted Average: Like averaging, weighted averaging is also used for regression tasks. Alternatively, it can be used while estimating probabilities in classification problems. Base learners are assigned different weights, which represent the importance of each model in the prediction. 

Ensemble Methods 

Ensemble methods became popular as a relatively simple device to improve the predictive performance of a base procedure. There are different reasons for this: the bagging procedure turns out to be a variance reduction scheme, at least for some base procedures. On the other hand, boosting methods are primarily reducing the (model) bias of the base procedure. This already indicates that bagging and boosting are very different ensemble methods. From the perspective of prediction, random forests is about as good as boosting, and often better than bagging.  

Bootstrap Aggregation or Bagging tries to implement similar learners on small sample populations and then takes a mean of all the predictions. 

  • It combines Bootstrapping and Aggregation to form one ensemble model 
  • Reduces the variance error and helps to avoid overfitting 

Bagging algorithms include: 

  • Bagging meta-estimator 
  • Random forest 

Boosting refers to a family of algorithms which converts weak learner to strong learners. Boosting is a sequential process, where each subsequent model attempts to correct the errors of the previous model. Boosting is focused on reducing the bias. It makes the boosting algorithms prone to overfitting. To avoid overfitting, parameter tuning plays an important role in boosting algorithms. Some examples of boosting are mentioned below: 

  • AdaBoost 
  • GBM 
  • XGBM 
  • Light GBM 
  • CatBoost 

Why use ensemble models? 

Ensemble models help in improving algorithm accuracy as well as the robustness of a model. Both Bagging and Boosting should be known by data scientists and machine learning engineers and especially people who are planning to attend data science/machine learning interviews. 

Ensemble learning uses hundreds to thousands of models of the same algorithm and then work hand in hand to find the correct classification. You may also consider the fable of the blind men and the elephant to understand ensemble learning, where each blind man found a feature of the elephant and they all thought it was something different. However, if they would work together and discussed among themselves, they might have figured out what it is. 

Using techniques like bagging and boosting leads to increased robustness of statistical models and decreased variance. Now the question becomes, between these different “B” words. Which is better? 

Which is better, Bagging or Boosting? 

There is no perfectly correct answer to that. It depends on the data, the simulation and the circumstances. 

Bagging and Boosting decrease the variance of your single estimate as they combine several estimates from different models. So the result may be a model with higher stability

If the problem is that the single model gets a very low performance, Bagging will rarely get a better bias. However, Boosting could generate a combined model with lower errors as it optimizes the advantages and reduces pitfalls of the single model. 

By contrast, if the difficulty of the single model is overfitting, then Bagging is the best option. Boosting for its part doesn’t help to avoid over-fitting; in fact, this technique is faced with this problem itself. For this reason, Bagging is effective more often than Boosting. In this article we will discuss about Bagging, we will cover Boosting in the next post. But first, let us look into the very important concept of bootstrapping. 

Bootstrap Sampling 

Sampling is the process of selecting a subset of observations from the population with the purpose of estimating some parameters about the whole population. Resampling methods, on the other hand, are used to improve the estimates of the population parameters. 

Bootstrap Sampling in Machine Learning

In machine learning, the bootstrap method refers to random sampling with replacement. This sample is referred to as a resample. This allows the model or algorithm to get a better understanding of the various biases, variances and features that exist in the resample. Taking a sample of the data allows the resample to contain different characteristics then it might have contained as a whole. This is demonstrated in figure 1 where each sample population has different pieces, and none are identical. This would then affect the overall mean, standard deviation and other descriptive metrics of a data set. In turn, it can develop more robust models. 

Bootstrapping is also great for small size data sets that can have a tendency to overfit. In fact, we recommended this to one company who was concerned because their data sets were far from “Big Data”. Bootstrapping can be a solution in this case because algorithms that utilize bootstrapping can be more robust and handle new data sets depending on the methodology chosen(boosting or bagging). 

The reason behind using the bootstrap method is because it can test the stability of a solution. By using multiple sample data sets and then testing multiple models, it can increase robustness. Perhaps one sample data set has a larger mean than another, or a different standard deviation. This might break a model that was overfit, and not tested using data sets with different variations. 

One of the many reasons bootstrapping has become very common is because of the increase in computing power. This allows for many times more permutations to be done with different resamples than previously. Bootstrapping is used in both Bagging and Boosting 

Let us assume we have a sample of ‘n’ values (x) and we’d like to get an estimate of the mean of the sample. 

mean(x) = 1/n * sum(x) 

Consider a sample of 100 values (x) and we’d like to get an estimate of the mean of the sample. We can calculate the mean directly from the sample as: 

Formula

We know that our sample is small and that the mean has an error in it. We can improve the estimate of our mean using the bootstrap procedure: 

  1. Create many (e.g. 1000) random sub-samples of the data set with replacement (meaning we can select the same value multiple times). 
  2. Calculate the mean of each sub-sample 
  3. Calculate the average of all of our collected means and use that as our estimated mean for the data 

Example: Suppose we used 3 re-samples and got the mean values 2.3, 4.5 and 3.3. Taking the average of these we could take the estimated mean of the data to be 3.367. This process can be used to estimate other quantities like the standard deviation and even quantities used in machine learning algorithms, like learned coefficients. 

While using Python, we do not have to implement the bootstrap method manually. The scikit-learn library provides an implementation that creates a single bootstrap sample of a dataset. 

The resample() scikit-learn function can be used for sampling. It takes as arguments the data array, whether or not to sample with replacement, the size of the sample, and the seed for the pseudorandom number generator used prior to the sampling. 

For example, let us create a bootstrap that creates a sample with replacement with 4 observations and uses a value of 1 for the pseudorandom number generator. 

boot = resample(data, replace=True, n_samples=4, random_state=1)

As the bootstrap API does not allow to easily gather the out-of-bag observations that could be used as a test set to evaluate a fit model, in the univariate case we can gather the out-of-bag observations using a simple Python list comprehension. 

# out of bag observations 
oob = [x for x in data if x not in boot]

Let us look at a small example and execute it.

# scikit-learn bootstrap 
from sklearn.utils import resample 
# data sample 
data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] 
# prepare bootstrap sample 
boot = resample(data, replace=True, n_samples=4, random_state=1) 
print('Bootstrap Sample: %s' % boot) 
# out of bag observations 
oob = [x for x in data if x not in boot] 
print('OOB Sample: %s' % oob) 

The output will include the observations in the bootstrap sample and those observations in the out-of-bag sample.

Bootstrap Sample: [0.6, 0.4, 0.5, 0.1] 
OOB Sample: [0.2, 0.3]

Bagging 

Bootstrap Aggregation, also known as Bagging, is a powerful ensemble method that was proposed by Leo Breiman in 1994 to prevent overfitting. The concept behind bagging is to combine the predictions of several base learners to create a more accurate output. Bagging is the application of the Bootstrap procedure to a high-variance machine learning algorithm, typically decision trees. 

  1. Suppose there are N observations and M features. A sample from observation is selected randomly with replacement (Bootstrapping). 
  2. A subset of features are selected to create a model with sample of observations and subset of features. 
  3. Feature from the subset is selected which gives the best split on the training data. 
  4. This is repeated to create many models and every model is trained in parallel 
  5. Prediction is given based on the aggregation of predictions from all the models. 

This approach can be used with machine learning algorithms that have a high variance, such as decision trees. A separate model is trained on each bootstrap sample of data and the average output of those models used to make predictions. This technique is called bootstrap aggregation or bagging for short. 

Variance means that an algorithm’s performance is sensitive to the training data, with high variance suggesting that the more the training data is changed, the more the performance of the algorithm will vary. 

The performance of high variance machine learning algorithms like unpruned decision trees can be improved by training many trees and taking the average of their predictions. Results are often better than a single decision tree. 

What Bagging does is help reduce variance from models that are might be very accurate, but only on the data they were trained on. This is also known as overfitting. 

Overfitting is when a function fits the data too well. Typically this is because the actual equation is much too complicated to take into account each data point and outlier. 

Overfitting in Machine Learning

Bagging gets around this by creating its own variance amongst the data by sampling and replacing data while it tests multiple hypothesis(models). In turn, this reduces the noise by utilizing multiple samples that would most likely be made up of data with various attributes(median, average, etc). 

Once each model has developed a hypothesis. The models use voting for classification or averaging for regression. This is where the “Aggregating” in “Bootstrap Aggregating” comes into play. Each hypothesis has the same weight as all the others. When we later discuss boosting, this is one of the places the two methodologies differ. 

Bagging in Machine Learning

Essentially, all these models run at the same time, and vote on which hypothesis is the most accurate. 

This helps to decrease variance i.e. reduce the overfit. 

Advantages 

  • Bagging takes advantage of ensemble learning wherein multiple weak learners outperform a single strong learner.  
  • It helps reduce variance and thus helps us avoid overfitting. 

Disadvantages 

  • There is loss of interpretability of the model. 
  • There can possibly be a problem of high bias if not modeled properly. 
  • While bagging gives us more accuracy, it is computationally expensive and may not be desirable depending on the use case. 

There are many bagging algorithms of which perhaps the most prominent would be Random Forest.  

Decision Trees 

Decision trees are simple but intuitive models. Using a top-down approach, a root node creates binary splits unless a particular criteria is fulfilled. This binary splitting of nodes results in a predicted value on the basis of the interior nodes which lead to the terminal or the final nodes. For a classification problem, a decision tree will output a predicted target class for each terminal node produced. We have covered decision tree algorithm  in detail for both classification and regression in another article. 

Limitations to Decision Trees 

Decision trees tend to have high variance when they utilize different training and test sets of the same data, since they tend to overfit on training data. This leads to poor performance when new and unseen data is added. This limits the usage of decision trees in predictive modeling. However, using ensemble methods, models that utilize decision trees can be created as a foundation for producing powerful results. 

Bootstrap Aggregating Trees 

We have already discussed about bootstrap aggregating (or bagging), we can create an ensemble (forest) of trees where multiple training sets are generated with replacement, meaning data instances. Once the training sets are created, a CART model can be trained on each subsample. 

Features of Bagged Trees 

  • Reduces variance by averaging the ensemble's results. 
  • The resulting model uses the entire feature space when considering node splits. 
  • Bagging trees allow the trees to grow without pruning, reducing the tree-depth sizes and resulting in high variance but lower bias, which can help improve predictive power. 

Limitations to Bagging Trees 

The main limitation of bagging trees is that it uses the entire feature space when creating splits in the trees. Suppose some variables within the feature space are indicating certain predictions, there is a risk of having a forest of correlated trees, which actually  increases bias and reduces variance. 

Why a Forest is better than One Tree?

The main objective of a machine learning model is to generalize properly to new and unseen data. When we have a flexible model, overfitting takes place. A flexible model is said to have high variance because the learned parameters (such as the structure of the decision tree) will vary with the training data. 

On the other hand, an inflexible model is said to have high bias as it makes assumptions about the training data. An inflexible model may not have the capacity to fit even the training data and in both cases — high variance and high bias — the model is not able to generalize new and unseen data properly. 

You can through the article on one of the foundational concepts in machine learning, bias-variance tradeoff which will help you understand that the balance between creating a model that is so flexible memorizes the training data and an inflexible model cannot learn the training data.  

The main reason why decision tree is prone to overfitting when we do not limit the maximum depth is because it has unlimited flexibility, which means it keeps growing unless there is one leaf node for every single observation. 

Instead of limiting the depth of the tree which results in reduced variance and increase in bias, we can combine many decision trees into a single ensemble model known as the random forest

What is Random Forest algorithm? 

Random forest is like bootstrapping algorithm with Decision tree (CART) model. Suppose we have 1000 observations in the complete population with 10 variables. Random forest will try to build multiple CART along with different samples and different initial variables. It will take a random sample of 100 observations and then chose 5 initial variables randomly to build a CART model. It will go on repeating the process say about 10 times and then make a final prediction on each of the observations. Final prediction is a function of each prediction. This final prediction can simply be the mean of each prediction. 

The random forest is a model made up of many decision trees. Rather than just simply averaging the prediction of trees (which we could call a “forest”), this model uses two key concepts that gives it the name random

  1. Random sampling of training data points when building trees 
  2. Random subsets of features considered when splitting nodes 

How the Random Forest Algorithm Works 

The basic steps involved in performing the random forest algorithm are mentioned below: 

  1. Pick N random records from the dataset. 
  2. Build a decision tree based on these N records. 
  3. Choose the number of trees you want in your algorithm and repeat steps 1 and 2. 
  4. In case of a regression problem, for a new record, each tree in the forest predicts a value for Y (output). The final value can be calculated by taking the average of all the values predicted by all the trees in the forest. Or, in the case of a classification problem, each tree in the forest predicts the category to which the new record belongs. Finally, the new record is assigned to the category that wins the majority vote. 

Using Random Forest for Regression 

Here we have a problem where we have to predict the gas consumption (in millions of gallons) in 48 US states based on petrol tax (in cents), per capita income (dollars), paved highways (in miles) and the proportion of population with the driving license. We will use the random forest algorithm via the Scikit-Learn Python library to solve this regression problem. 

First we import the necessary libraries and our dataset. 

import pandas as pd 
import numpy as np 
dataset = pd.read_csv('/content/petrol_consumption.csv') 
dataset.head() 

Petrol_taxAverage_incomepaved_HighwaysPopulation_Driver_licence(%)Petrol_Consumption
09.0357119760.525541
19.0409212500.572524
29.0386515860.580561
37.5487023510.529414
48.043994310.544410

You will notice that the values in our dataset are not very well scaled. Let us scale them down before training the algorithm. 

Preparing Data For Training 

We will perform two tasks in order to prepare the data. Firstly we will divide the data into ‘attributes’ and ‘label’ sets. The resultant will then be divided into training and test sets. 

X = dataset.iloc[:, 0:4].values 
y = dataset.iloc[:, 4].values

Now let us divide the data into training and testing sets:

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

Feature Scaling 

The dataset is not yet a scaled value as you will see that the Average_Income field has values in the range of thousands while Petrol_tax has values in the range of tens. It will be better if we scale our data. We will use Scikit-Learn's StandardScaler class to do the same. 

# Feature Scaling 
from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test)

Training the Algorithm 

Now that we have scaled our dataset, let us train the random forest algorithm to solve this regression problem. 

from sklearn.ensemble import Random Forest Regressor 
regressor = Random Forest Regressor(n_estimators=20,random_state=0) 
regressor.fit(X_train, y_train) 
y_pred = regressor.predict(X_test)

The RandomForestRegressor is used to solve regression problems via random forest. The most important parameter of the RandomForestRegressor class is the n_estimators parameter. This parameter defines the number of trees in the random forest. Here we started with n_estimator=20 and check the performance of the algorithm. You can find details for all of the parameters of RandomForestRegressor here

Evaluating the Algorithm 

Let us evaluate the performance of the algorithm. For regression problems the metrics used to evaluate an algorithm are mean absolute error, mean squared error, and root mean squared error.  

from sklearn import metrics 
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) 
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) 
print('Root Mean Squared Error:', 
np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 
Mean Absolute Error: 51.76500000000001 
Mean Squared Error: 4216.166749999999 
Root Mean Squared Error: 64.93201637097064 

With 20 trees, the root mean squared error is 64.93 which is greater than 10 percent of the average petrol consumption i.e. 576.77. This may indicate, among other things, that we have not used enough estimators (trees). 

Let us now change the number of estimators to 200, the results are as follows: 

Mean Absolute Error: 48.33899999999999 
Mean Squared Error: 3494.2330150000003 
Root Mean Squared Error: 59.112037818028234 

The graph below shows the decrease in the value of the root mean squared error (RMSE) with respect to number of estimators.  

RMSE Graph in Machine Learning

You will notice that the error values decrease with the increase in the number of estimators. You may consider 200 a good number for n_estimators as the rate of decrease in error diminishes. You may try playing around with other parameters to figure out a better result. 

Using Random Forest for Classification

Now let us consider a classification problem to predict whether a bank currency note is authentic or not based on four attributes i.e. variance of the image wavelet transformed image, skewness, entropy, andkurtosis of the image. We will use Random Forest Classifier to solve this binary classification problem. Let’s get started. 

import pandas as pd 
import numpy as np 
dataset = pd.read_csv('/content/bill_authentication.csv') 
dataset.head()

VarianceSkewnessKurtosisEntropyClass
03.621608.6661-2.8073-0.446990
14.545908.1674-2.4586-1.462100
23.86600-2.63831.92420.106450
33.456609.5228-4.0112-3.594400
40.32924-4.45524.5718-0.988800

Similar to the data we used previously for the regression problem, this data is not scaled. Let us prepare the data for training. 

Preparing Data For Training 

The following code divides data into attributes and labels: 

X = dataset.iloc[:, 0:4].values 
y = dataset.iloc[:, 4].values 

The following code divides data into training and testing sets:

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 

Feature Scaling 

We will do the same thing as we did for the previous problem. 

# Feature Scaling 
from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test)

Training the Algorithm 

Now that we have scaled our dataset, let us train the random forest algorithm to solve this classification problem. 

from sklearn.ensemble import Random Forest Classifier 
classifier = RandomForestClassifier(n_estimators=20, random_state=0) 
classifier.fit(X_train, y_train) 
y_pred = classifier.predict(X_test)

For classification, we have used RandomForestClassifier class of the sklearn.ensemble library. It takes n_estimators as a parameter. This parameter defines the number of trees in out random forest. Similar to the regression problem, we have started with 20 trees here. You can find details for all of the parameters of Random Forest Classifier here

Evaluating the Algorithm 

For evaluating classification problems,  the metrics used are accuracy, confusion matrix, precision recall, and F1 values

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score 
print(confusion_matrix(y_test,y_pred)) 
print(classification_report(y_test,y_pred)) 
print(accuracy_score(y_test, y_pred)) 

The output will look something like this: 

Output:

[ [ 155   2]
[     1  117] ]

Precisionrecallf1-scoresupport
00.990.990.99157
10.980.990.99118
accuracy
0.99275
macro avg0.990.990.99275
0.98909090909090910.990.990.99275

The accuracy achieved by our random forest classifier with 20 trees is 98.90%. Let us change the number of trees to 200.

from sklearn.ensemble import Random Forest Classifier 
classifier = Random Forest Classifier(n_estimators=200, random_state=0) 
classifier.fit(X_train, y_train) 
y_pred = classifier.predict(X_test) 

Output:

[ [ 155   2]
[     1  117] ]

Precisionrecallf1-scoresupport
00.990.990.99157
10.980.990.99118
accuracy
0.99275
macro avg0.990.990.99275
0.98909090909090910.990.990.99275

Unlike the regression problem, changing the number of estimators for this problem did not make any difference in the results.

Accuracy Random Forest in Machine Learning

An accuracy of 98.9% is pretty good. In this case, we have seen that there is not much improvement if the number of trees are increased. You may try playing around with other parameters of the RandomForestClassifier class and see if you can improve on our results. 

Advantages and Disadvantages of using Random Forest 

As with any algorithm, there are advantages and disadvantages to using it. Let us look into the pros and cons of using Random Forest for classification and regression. 

Advantages 

  • Random forest algorithm is unbiased as there are multiple trees and each tree is trained on a subset of data.  
  • Random Forest algorithm is very stable. Introducing a new data in the dataset does not affect much as the new data impacts one tree and is pretty hard to impact all the trees. 
  • The random forest algorithm works well when you have both categorical and numerical features. 
  • With missing values in the dataset, the random forest algorithm performs very well. 

Disadvantages 

  • A major disadvantage of random forests lies in their complexity. More computational resources are required and also results in the large number of decision trees joined together. 
  • Due to their complexity, training time is more compared to other algorithms. 

Summary 

In this article we have covered what is ensemble learning and discussed about basic ensemble techniques. We also looked into bootstrap sampling involves iteratively resampling of a dataset with replacement which allows the model or algorithm to get a better understanding various features. Then we moved on to bagging followed by random forest. We also implemented random forest in Python for both regression and classification and came to a conclusion that increasing number of trees or estimators does not always make a difference in a classification problem. However, in regression there is an impact.  

We have covered most of the topics related to algorithms in our series of machine learning blogs,click here. If you are inspired by the opportunities provided by machine learning, enrol in our  Data Science and Machine Learning Courses for more lucrative career options in this landscape.


Build your own projects using Machine Learning with Python. Practice with our industry experts on our live workshops now.

Priyankur

Priyankur Sarkar

Data Science Enthusiast

Priyankur Sarkar loves to play with data and get insightful results out of it, then turn those data insights and results in business growth. He is an electronics engineer with a versatile experience as an individual contributor and leading teams, and has actively worked towards building Machine Learning capabilities for organizations.

Join the Discussion

Your email address will not be published. Required fields are marked *

Suggested Blogs

Types of Probability Distributions Every Data Science Expert Should know

Data Science has become one of the most popular interdisciplinary fields. It uses scientific approaches, methods, algorithms, and operations to obtain facts and insights from unstructured, semi-structured, and structured datasets. Organizations use these collected facts and insights for efficient production, business growth, and to predict user requirements. Probability distribution plays a significant role in performing data analysis equipping a dataset for training a model. In this article, you will learn about the types of Probability Distribution, random variables, types of discrete distributions, and continuous distribution.  What is Probability Distribution? A Probability Distribution is a statistical method that determines all the probable values and possibilities that a random variable can deliver from a particular range. This range of values will have a lower bound and an upper bound, which we call the minimum and the maximum possible values.  Various factors on which plotting of a value depends are standard deviation, mean (or average), skewness, and kurtosis. All of these play a significant role in Data science as well. We can use probability distribution in physics, engineering, finance, data analysis, machine learning, etc. Significance of Probability distributions in Data Science In a way, most of the data science and machine learning operations are dependent on several assumptions about the probability of your data. Probability distribution allows a skilled data analyst to recognize and comprehend patterns from large data sets; that is, otherwise, entirely random variables and values. Thus, it makes probability distribution a toolkit based on which we can summarize a large data set. The density function and distribution techniques can also help in plotting data, thus supporting data analysts to visualize data and extract meaning. General Properties of Probability Distributions Probability distribution determines the likelihood of any outcome. The mathematical expression takes a specific value of x and shows the possibility of a random variable with p(x). Some general properties of the probability distribution are – The total of all probabilities for any possible value becomes equal to 1. In a probability distribution, the possibility of finding any specific value or a range of values must lie between 0 and 1. Probability distributions tell us the dispersal of the values from the random variable. Consequently, the type of variable also helps determine the type of probability distribution.Common Data Types Before jumping directly into explaining the different probability distributions, let us first understand the different types of probability distributions or the main categories of the probability distribution. Data analysts and data engineers have to deal with a broad spectrum of data, such as text, numerical, image, audio, voice, and many more. Each of these have a specific means to be represented and analyzed. Data in a probability distribution can either be discrete or continuous. Numerical data especially takes one of the two forms. Discrete data: They take specific values where the outcome of the data remains fixed. Like, for example, the consequence of rolling two dice or the number of overs in a T-20 match. In the first case, the result lies between 2 and 12. In the second case, the event will be less than 20. Different types of discrete distributions that use discrete data are: Binomial Distribution Hypergeometric Distribution Geometric Distribution Poisson Distribution Negative Binomial Distribution Multinomial Distribution  Continuous data: It can obtain any value irrespective of bound or limit. Example: weight, height, any trigonometric value, age, etc. Different types of continuous distributions that use continuous data are: Beta distribution Cauchy distribution Exponential distribution Gamma distribution Logistic distribution Weibull distribution Types of Probability Distribution explained Here are some of the popular types of Probability distributions used by data science professionals. (Try all the code using Jupyter Notebook) Normal Distribution: It is also known as Gaussian distribution. It is one of the simplest types of continuous distribution. This probability distribution is symmetrical around its mean value. It also shows that data at close proximity of the mean is frequently occurring, compared to data that is away from it. Here, mean = 0, variance = finite valueHere, you can see 0 at the center is the Normal Distribution for different mean and variance values. Here is a code example showing the use of Normal Distribution: from scipy.stats import norm  import matplotlib.pyplot as mpl  import numpy as np  def normalDist() -> None:      fig, ax = mpl.subplots(1, 1)      mean, var, skew, kurt = norm.stats(moments = 'mvsk')      x = np.linspace(norm.ppf(0.01),  norm.ppf(0.99), 100)      ax.plot(x, norm.pdf(x),          'r-', lw = 5, alpha = 0.6, label = 'norm pdf')      ax.plot(x, norm.cdf(x),          'b-', lw = 5, alpha = 0.6, label = 'norm cdf')      vals = norm.ppf([0.001, 0.5, 0.999])      np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))      r = norm.rvs(size = 1000)      ax.hist(r, normed = True, histtype = 'stepfilled', alpha = 0.2)      ax.legend(loc = 'best', frameon = False)      mpl.show()  normalDist() Output: Bernoulli Distribution: It is the simplest type of probability distribution. It is a particular case of Binomial distribution, where n=1. It means a binomial distribution takes 'n' number of trials, where n > 1 whereas, the Bernoulli distribution takes only a single trial.   Probability Mass Function of a Bernoulli’s Distribution is:  where p = probability of success and q = probability of failureHere is a code example showing the use of Bernoulli Distribution: from scipy.stats import bernoulli  import seaborn as sb    def bernoulliDist():      data_bern = bernoulli.rvs(size=1200, p = 0.7)      ax = sb.distplot(          data_bern,           kde = True,           color = 'g',           hist_kws = {'alpha' : 1},          kde_kws = {'color': 'y', 'lw': 3, 'label': 'KDE'})      ax.set(xlabel = 'Bernouli Values', ylabel = 'Frequency Distribution')  bernoulliDist() Output:Continuous Uniform Distribution: In this type of continuous distribution, all outcomes are equally possible; each variable gets the same probability of hit as a consequence. This symmetric probabilistic distribution has random variables at an equal interval, with the probability of 1/(b-a). Here is a code example showing the use of Uniform Distribution: from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def uniformDist():      sb.distplot(random.uniform(size = 1200), hist = True)      mpl.show()  uniformDist() Output: Log-Normal Distribution: A Log-Normal distribution is another type of continuous distribution of logarithmic values that form a normal distribution. We can transform a log-normal distribution into a normal distribution. Here is a code example showing the use of Log-Normal Distribution import matplotlib.pyplot as mpl  def lognormalDist():      muu, sig = 3, 1      s = np.random.lognormal(muu, sig, 1000)      cnt, bins, ignored = mpl.hist(s, 80, normed = True, align ='mid', color = 'y')      x = np.linspace(min(bins), max(bins), 10000)      calc = (np.exp( -(np.log(x) - muu) **2 / (2 * sig**2))             / (x * sig * np.sqrt(2 * np.pi)))      mpl.plot(x, calc, linewidth = 2.5, color = 'g')      mpl.axis('tight')      mpl.show()  lognormalDist() Output: Pareto Distribution: It is one of the most critical types of continuous distribution. The Pareto Distribution is a skewed statistical distribution that uses power-law to describe quality control, scientific, social, geophysical, actuarial, and many other types of observable phenomena. The distribution shows slow or heavy-decaying tails in the plot, where much of the data reside at its extreme end. Here is a code example showing the use of Pareto Distribution – import numpy as np  from matplotlib import pyplot as plt  from scipy.stats import pareto  def paretoDist():      xm = 1.5        alp = [2, 4, 6]       x = np.linspace(0, 4, 800)      output = np.array([pareto.pdf(x, scale = xm, b = a) for a in alp])      plt.plot(x, output.T)      plt.show()  paretoDist() Output:Exponential Distribution: It is a type of continuous distribution that determines the time elapsed between events (in a Poisson process). Let’s suppose, that you have the Poisson distribution model that holds the number of events happening in a given period. We can model the time between each birth using an exponential distribution.Here is a code example showing the use of Pareto Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def expDist():      sb.distplot(random.exponential(size = 1200), hist = True)      mpl.show()   expDist()Output:Types of the Discrete probability distribution – There are various types of Discrete Probability Distribution a Data science aspirant should know about. Some of them are – Binomial Distribution: It is one of the popular discrete distributions that determine the probability of x success in the 'n' trial. We can use Binomial distribution in situations where we want to extract the probability of SUCCESS or FAILURE from an experiment or survey which went through multiple repetitions. A Binomial distribution holds a fixed number of trials. Also, a binomial event should be independent, and the probability of obtaining failure or success should remain the same. Here is a code example showing the use of Binomial Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb    def binomialDist():      sb.distplot(random.normal(loc = 50, scale = 6, size = 1200), hist = False, label = 'normal')      sb.distplot(random.binomial(n = 100, p = 0.6, size = 1200), hist = False, label = 'binomial')      plt.show()    binomialDist() Output:Geometric Distribution: The geometric probability distribution is one of the crucial types of continuous distributions that determine the probability of any event having likelihood ‘p’ and will happen (occur) after 'n' number of Bernoulli trials. Here 'n' is a discrete random variable. In this distribution, the experiment goes on until we encounter either a success or a failure. The experiment does not depend on the number of trials. Here is a code example showing the use of Geometric Distribution – import matplotlib.pyplot as mpl  def probability_to_occur_at(attempt, probability):      return (1-p)**(attempt - 1) * probability  p = 0.3  attempt = 4  attempts_to_show = range(21)[1:]  print('Possibility that this event will occur on the 7th try: ', probability_to_occur_at(attempt, p))  mpl.xlabel('Number of Trials')  mpl.ylabel('Probability of the Event')  barlist = mpl.bar(attempts_to_show, height=[probability_to_occur_at(x, p) for x in attempts_to_show], tick_label=attempts_to_show)  barlist[attempt].set_color('g')  mpl.show() Output:Poisson Distribution: Poisson distribution is one of the popular types of discrete distribution that shows how many times an event has the possibility of occurrence in a specific set of time. We can obtain this by limiting the Bernoulli distribution from 0 to infinity. Data analysts often use the Poisson distributions to comprehend independent events occurring at a steady rate in a given time interval. Here is a code example showing the use of Poisson Distribution from scipy.stats import poisson  import seaborn as sb  import numpy as np  import matplotlib.pyplot as mpl  def poissonDist():       mpl.figure(figsize = (10, 10))      data_binom = poisson.rvs(mu = 3, size = 5000)      ax = sb.distplot(data_binom, kde=True, color = 'g',                       bins=np.arange(data_binom.min(), data_binom.max() + 1),                       kde_kws={'color': 'y', 'lw': 4, 'label': 'KDE'})      ax.set(xlabel = 'Poisson Distribution', ylabel='Data Frequency')      mpl.show()      poissonDist() Output:Multinomial Distribution: A multinomial distribution is another popular type of discrete probability distribution that calculates the outcome of an event having two or more variables. The term multi means more than one. The Binomial distribution is a particular type of multinomial distribution with two possible outcomes - true/false or heads/tails. Here is a code example showing the use of Multinomial Distribution – import numpy as np  import matplotlib.pyplot as mpl  np.random.seed(99)   n = 12                      pvalue = [0.3, 0.46, 0.22]     s = []  p = []     for size in np.logspace(2, 3):      outcomes = np.random.multinomial(n, pvalue, size=int(size))        prob = sum((outcomes[:,0] == 7) & (outcomes[:,1] == 2) & (outcomes[:,2] == 3))/len(outcomes)      p.append(prob)      s.append(int(size))  fig1 = mpl.figure()  mpl.plot(s, p, 'o-')  mpl.plot(s, [0.0248]*len(s), '--r')  mpl.grid()  mpl.xlim(xmin = 0)  mpl.xlabel('Number of Events')  mpl.ylabel('Function p(X = K)') Output:Negative Binomial Distribution: It is also a type of discrete probability distribution for random variables having negative binomial events. It is also known as the Pascal distribution, where the random variable tells us the number of repeated trials produced during a specific number of experiments.  Here is a code example showing the use of Negative Binomial Distribution – import matplotlib.pyplot as mpl   import numpy as np   from scipy.stats import nbinom    x = np.linspace(0, 6, 70)   gr, kr = 0.3, 0.7        g = nbinom.ppf(x, gr, kr)   s = nbinom.pmf(x, gr, kr)   mpl.plot(x, g, "*", x, s, "r--") Output: Apart from these mentioned distribution types, various other types of probability distributions exist that data science professionals can use to extract reliable datasets. In the next topic, we will understand some interconnections & relationships between various types of probability distributions. Relationship between various Probability distributions – It is surprising to see that different types of probability distributions are interconnected. In the chart shown below, the dashed line is for limited connections between two families of distribution, whereas the solid lines show the exact relationship between them in terms of transformation, variable, type, etc. Conclusion  Probability distributions are prevalent among data analysts and data science professionals because of their wide usage. Today, companies and enterprises hire data science professionals in many sectors, namely, computer science, health, insurance, engineering, and even social science, where probability distributions appear as fundamental tools for application. It is essential for Data analysts and data scientists. to know the core of statistics. Probability Distributions perform a requisite role in analyzing data and cooking a dataset to train the algorithms efficiently. If you want to learn more about data science - particularly probability distributions and their uses, check out KnowledgeHut's comprehensive Data science course. 
9709
Types of Probability Distributions Every Data Scie...

Data Science has become one of the most popular in... Read More

Top Data Analytics Certifications

What is data analytics?In the world of IT, every small bit of data count; even information that looks like pure nonsense has its significance. So, how do we retrieve the significance from this data? This is where Data Science and analytics comes into the picture.  Data Analytics is a process where data is inspected, transformed and interpreted to discover some useful bits of information from all the noise and make decisions accordingly. It forms the entire basis of the social media industry and finds a lot of use in IT, finance, hospitality and even social sciences. The scope in data analytics is nearly endless since all facets of life deal with the storage, processing and interpretation of data.Why data analytics? Data Analytics in this Information Age has nearly endless opportunities since literally everything in this era hinges on the importance of proper processing and data analysis. The insights from any data are crucial for any business. The field of data Analytics has grown more than 50 times from the early 2000s to 2021. Companies specialising in banking, healthcare, fraud detection, e-commerce, telecommunication, infrastructure and risk management hire data analysts and professionals every year in huge numbers.Need for certification:Skills are the first and foremost criteria for a job, but these skills need to be validated and recognised by reputed organisations for them to impress a potential employer. In the field of Data Analytics, it is pretty crucial to show your certifications. Hence, an employer knows you have hands-on experience in the field and can handle the workload of a real-world setting beyond just theoretical knowledge. Once you get a base certification, you can work your way up to higher and higher positions and enjoy lucrative pay packages. Top Data Analytics Certifications Certified Analytics Professional (CAP) Microsoft Certified Azure Data Scientist Associate Cloudera Certified Associate (CCA) Data Analyst Associate Certified Analytics Professional (aCAP) SAS Certified Data Analyst (Using SAS91. Certified Analytics Professional (CAP)A certification from an organisation called INFORMS, CAP is a notoriously rigorous certification and stands out like a star on an applicant's resume. Those who complete this program gain an invaluable credential and are able to distinguish themselves from the competition. It gives a candidate a comprehensive understanding of the analytical process's various fine aspects--from framing hypotheses and analytic problems to the proper methodology, along with acquisition, model building and deployment process with long-term life cycle management. It needs to be renewed after three years.The application process is in itself quite complex, and it also involves signing the CAP Code of Ethics before one is given the certification. The CAP panel reviews each application, and those who pass this review are the only ones who can give the exam.  Prerequisite: A bachelor’s degree with 5 years of professional experience or a master's degree with 3 years of professional experience.  Exam Fee & Format: The base price is $695. For individuals who are members of INFORMS the price is $495. (Source) The pass percentage is 70%. The format is a four option MCQ paper. Salary: $76808 per year (Source) 2. Cloudera Certified Associate (CCA) Data Analyst Cloudera has a well-earned reputation in the IT sector, and its Associate Data analyst certification can help bolster the resume of Business intelligence specialists, system architects, data analysts, database administrators as well as developers. It has a specific focus on SQL developers who aim to show their proficiency on the platform.This certificate validates an applicant's ability to operate in a CDH environment by Cloudera using Impala and Hive tools. One doesn't need to turn to expensive tuitions and academies as Cloudera offers an Analyst Training course with almost the same objectives as the exam, leaving one with a good grasp of the fundamentals.   Prerequisites: basic knowledge of SQL and Linux Command line Exam Fee & Format: The cost of the exam is $295 (Source), The test is a performance-based test containing 8-12 questions to be completed in a proctored environment under 129 minutes.  Expected Salary: You can earn the job title of Cloudera Data Analyst that pays up to $113,286 per year. (Source)3. Associate Certified Analytics Professional (aCAP)aCAP is an entry-level certification for Analytics professionals with lesser experience but effective knowledge, which helps in real-life situations. It is for those candidates who have a master’s degree in a field related to data analytics.  It is one of the few vendor-neutral certifications on the list and must be converted to CAP within 6 years, so it offers a good opportunity for those with a long term path in a Data Analytics career. It also needs to be renewed every three years, like the CAP certification. Like its professional counterpart, aCAP helps a candidate step out in a vendor-neutral manner and drastically increases their professional credibility.  Prerequisite: Master’s degree in any discipline related to data Analytics. Exam Fee: The base price is $300. For individuals who are members of INFORMS the price is $200. (Source). There is an extensive syllabus which covers: i. Business Problem Framing, ii. Analytics Problem Framing, iii. Data, iv. Methodology Selection, v. Model Building, vi. Deployment, vii. Lifecycle Management of the Analytics process, problem-solving, data science and visualisation and much more.4. SAS Certified Data Analyst (Using SAS9)From one of the pioneers in IT and Statistics - the SAS Institute of Data Management - a SAS Certified Data Scientist can gain insights and analyse various aspects of data from businesses using tools like the SAS software and other open-source methodology. It also validates competency in using complex machine learning models and inferring results to interpret future business strategy and release models using the SAS environment. SAS Academy for Data Science is a viable institute for those who want to receive proper training for the exam and use this as a basis for their career.  Prerequisites: To earn this credential, one needs to pass 5 exams, two from the SAS Certified Big Data Professional credential and three exams from the SAS Certified Advanced Analytics Professional Credential. Exam Fee: The cost for each exam is $180. (Source) An exception is Predictive Modelling using the SAS Enterprise Miner, costing $250, This exam can be taken in the English language. One can join the SAS Academy for Data Science and also take a practice exam beforehand. Salary: You can get a job as a SAS Data Analyst that pays up to $90,000 per year! (Source) 5. IBM Data Science Professional CertificateWhenever someone studies the history of a computer, IBM (International Business Machines) is the first brand that comes up. IBM is still alive and kicking, now having forayed into and becoming a major player in the Big Data segment. The IBM Data Science Professional certificate is one of the beginner-level certificates if you want to sink your hands into the world of data analysis. It shows a candidate's skills in various topics pertaining to data sciences, including various open-source tools, Python databases, SWL, data visualisation, and data methodologies.  One needs to complete nine courses to earn the certificate. It takes around three months if one works twelve hours per week. It also involves the completion of various hands-on assignments and building a portfolio. A candidate earns the Professional certificate from Coursera and a badge from IBM that recognises a candidate's proficiency in the area. Prerequisites: It is the optimal course for freshers since it requires no requisite programming knowledge or proficiency in Analytics. Exam Fee: It costs $39 per month (Source) to access the course materials and the certificate. The course is handled by the Coursera organisation. Expected Salary: This certification can earn you the title of IBM Data Scientist and help you earn a salary of $134,846 per annum. (Source) 6. Microsoft Certified Azure Data Scientist AssociateIt's one of the most well-known certifications for newcomers to step into the field of Big Data and Data analytics. This credential is offered by the leader in the industry, Microsoft Azure. This credential validates a candidate's ability to work with Microsoft Azure developing environment and proficiency in analysing big data, preparing data for the modelling process, and then progressing to designing models. One advantage of this credential is that it has no expiry date and does not need renewal; it also authorises the candidate’s extensive knowledge in predictive Analytics. Prerequisites: knowledge and experience in data science and using Azure Machine Learning and Azure Databricks. Exam Fee: It costs $165 to (Source) register for the exam. One advantage is that there is no need to attend proxy institutions to prepare for this exam, as Microsoft offers free training materials as well as an instructor-led course that is paid. There is a comprehensive collection of resources available to a candidate. Expected Salary: The job title typically offered is Microsoft Data Scientist and it typically fetches a yearly pay of $130,993.(Source) Why be a Data Analytics professional? For those already working in the field of data, being a Data Analyst is one of the most viable options. The salary of a data analyst ranges from $65,000 to $85,000 depending on number of years of experience. This lucrative salary makes it worth the investment to get a certification and advance your skills to the next level so that you can work for multinational companies by interpreting and organising data and using this analysis to accelerate businesses. These certificates demonstrate that you have the required knowledge needed to operate data models of the volumes needed by big organizations. 1. Demand is more than supply With the advent of the Information Age, there has been a huge boom in companies that either entirely or partially deal with IT. For many companies IT forms the core of their business. Every business has to deal with data, and it is crucial to get accurate insights from this data and use it to further business interests and expand profits. The interpretation of data also aims to guide them in the future to make the best business decisions.  Complex business intelligence algorithms are in place these days. They need trained professionals to operate them; since this field is relatively new, there is a shortage of experts. Thus, there are vacancies for data analyst positions with lucrative pay if one is qualified enough.2. Good pay with benefitsA data analyst is an extremely lucrative profession, with an average base pay of $71,909 (Source), employee benefits, a good work-home balance, and other perks. It has been consistently rated as being among the hottest careers of the decade and allows professionals to have a long and satisfying career.   Companies Hiring Certified Data Analytics Professionals Oracle A California based brand, Oracle is a software company that is most famous for its data solutions. With over 130000 employees and a revenue of 39 billion, it is surely one of the bigger players in Data Analytics.  MicroStrategy   Unlike its name, this company is anything but micro, with more than 400 million worth of revenue. It provides a suite of analytical products along with business mobility solutions. It is a key player in the mobile space, working natively with Android and iOS.   SAS   One of the companies in the list which provides certifications and is also without a doubt one of the largest names in the field of Big Data, machine learning and Data Analytics, is SAS. The name SAS is derived from Statistical Analysis System. This company is trusted and has a solid reputation. It is also behind the SAS Institute for Data Science. Hence, SAS is the organisation you would want to go to if you're aiming for a long-term career in data science.    Conclusion To conclude, big data and data Analytics are a field of endless opportunities. By investing in the right credential, one can pave the way to a viable and lucrative career path. Beware though, there are lots of companies that provide certifications, but only recognised and reputed credentials will give you the opportunities you are seeking. Hiring companies look for these certifications as a mark of authenticity of your hands-on experience and the amount of work you can handle effectively. Therefore, the credential you choose for yourself plays a vital role in the career you can have in the field of Data analytics.  Happy learning!    
5650
Top Data Analytics Certifications

What is data analytics?In the world of IT, every s... Read More

Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology you would have heard of machine learning. In fact machine learning is now a buzzword and there are dozens of articles and research papers dedicated to it.  Machine learning is a technique which makes the machine learn from past experiences. Complex domain problems can be resolved quickly and efficiently using Machine Learning techniques.  We are living in an age where huge amounts of data are produced every second. This explosion of data has led to creation of machine learning models which can be used to analyse data and to benefit businesses.  This article tries to answer a few important concepts related to Machine Learning and informs you about the career path in this prestigious and important domain.What is Machine Learning?So, here’s your introduction to Machine Learning. This term was coined in the year 1997. “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at the tasks improves with the experiences.”, as defined in the book on ML written by Mitchell in 1997. The difference between a traditional programming and programming using Machine Learning is depicted here, the first Approach (a) is a traditional approach, and second approach (b) is a Machine Learning based approach.Machine Learning encompasses the techniques in AI which allow the system to learn automatically looking at the data available. While learning, the system tries to improve the experience without making any explicit efforts in programming. Any machine learning application follows the following steps broadlySelecting the training datasetAs the definition indicates, machine learning algorithms require past experience, that is data, for learning. So, selection of appropriate data is the key for any machine learning application.Preparing the dataset by preprocessing the dataOnce the decision about the data is made, it needs to be prepared for use. Machine learning algorithms are very susceptible to the small changes in data. To get the right insights, data must be preprocessed which includes data cleaning and data transformation.  Exploring the basic statistics and properties of dataTo understand what the data wishes to convey, the data engineer or Machine Learning engineer needs to understand the properties of data in detail. These details are understood by studying the statistical properties of data. Visualization is an important process to understand the data in detail.Selecting the appropriate algorithm to apply on the datasetOnce the data is ready and understood in detail, then appropriate Machine Learning algorithms or models are selected. The choice of algorithm depends on characteristics of data as well as type of task to be performed on the data. The choice also depends on what kind of output is required from the data.Checking the performance and fine-tuning the parameters of the algorithmThe model or algorithm chosen is fine-tuned to get improved performance. If multiple models are applied, then they are weighed against the performance. The final algorithm is again fine-tuned to get appropriate output and performance.Why Pursue a Career in Machine Learning in 2021?A recent survey has estimated that the jobs in AI and ML have grown by more than 300%. Even before the pandemic struck, Machine Learning skills were in high demand and the demand is expected to increase two-fold in the near future.A career in machine learning gives you the opportunity to make significant contributions in AI, the future of technology. All the big and small businesses are adopting Machine Learning models to improve their bottom-line margins and return on investment.  The use of Machine Learning has gone beyond just technology and it is now used in diverse industries including healthcare, automobile, manufacturing, government and more. This has greatly enhanced the value of Machine Learning experts who can earn an average salary of $112,000.  Huge numbers of jobs are expected to be created in the coming years.  Here are a few reasons why one should pursue a career in Machine Learning:The global machine learning market is expected to touch $20.83B in 2024, according to Forbes.  We are living in a digital age and this explosion of data has made the use of machine learning models a necessity. Machine Learning is the only way to extract meaning out of data and businesses need Machine Learning engineers to analyze huge data and gain insights from them to improve their businesses.If you like numbers, if you like research, if you like to read and test and if you have a passion to analyse, then machine learning is the career for you. Learning the right tools and programming languages will help you use machine learning to provide appropriate solutions to complex problems, overcome challenges and grow the business.Machine Learning is a great career option for those interested in computer science and mathematics. They can come up with new Machine Learning algorithms and techniques to cater to the needs of various business domains.As explained above, a career in machine learning is both rewarding and lucrative. There are huge number of opportunities available if you have the right expertise and knowledge. On an average, Machine Learning engineers get higher salaries, than other software developers.Years of experience in the Machine Learning domain, helps you break into data scientist roles, which is not just among the hottest careers of our generation but also a highly respected and lucrative career. Right skills in the right business domain helps you progress and make a mark for yourself in your organization. For example, if you have expertise in pharmaceutical industries and experience working in Machine learning, then you may land job roles as a data scientist consultant in big pharmaceutical companies.Statistics on Machine learning growth and the industries that use MLAccording to a research paper in AI Multiple (https://research.aimultiple.com/ml-stats/), the Machine Learning market will grow to 9 Billion USD by the end of 2022. There are various areas where Machine Learning models and solutions are getting deployed, and businesses see an overall increase of 44% investments in this area. North America is one of the leading regions in the adoption of Machine Learning followed by Asia.The Global Machine Learning market will grow by 42% which is evident from the following graph. Image sourceThere is a huge demand for Machine Learning modelling because of the large use of Cloud Based Applications and Services. The pandemic has changed the face of businesses, making them heavily dependent on Cloud and AI based services. Google, IBM, and Amazon are just some of the companies that have invested heavily in AI and Machine Learning based application development, to provide robust solutions for problems faced by small to large scale businesses. Machine Learning and Cloud based solutions are scalable and secure for all types of business.ML analyses and interprets data patterns, computing and developing algorithms for various business purposes.Advantages of Machine Learning courseNow that we have established the advantages of perusing a career in Machine Learning, let’s understand from where to start our machine learning journey. The best option would be to start with a Machine Learning course. There are various platforms which offer popular Machine Learning courses. One can always start with an online course which is both effective and safe in these COVID times.These courses start with an introduction to Machine Learning and then slowly help you to build your skills in the domain. Many courses even start with the basics of programming languages such as Python, which are important for building Machine Learning models. Courses from reputed institutions will hand hold you through the basics. Once the basics are clear, you may switch to an offline course and get the required certification.Online certifications have the same value as offline classes. They are a great way to clear your doubts and get personalized help to grow your knowledge. These courses can be completed along with your normal job or education, as most are self-paced and can be taken at a time of your convenience. There are plenty of online blogs and articles to aid you in completion of your certification.Machine Learning courses include many real time case studies which help you in understanding the basics and application aspects. Learning and applying are both important and are covered in good Machine Learning Courses. So, do your research and pick an online tutorial that is from a reputable institute.What Does the Career Path in Machine Learning Look Like?One can start their career in Machine Learning domain as a developer or application programmer. But the acquisition of the right skills and experience can lead you to various career paths. Following are some of the career options in Machine Learning (not an exhaustive list):Data ScientistA data scientist is a person with rich experience in a particular business field. A person who has a knowledge of domain, as well as machine learning modelling, is a data scientist. Data Scientists’ job is to study the data carefully and suggest accurate models to improve the business.AI and Machine Learning EngineerAn AI engineer is responsible for choosing the proper Machine Learning Algorithm based on natural language processing and neural network. They are responsible for applying it in AI applications like personalized advertising.  A Machine Learning Engineer is responsible for creating the appropriate models for improvement of the businessData EngineerA Data Engineer, as the name suggests, is responsible to collect data and make it ready for the application of Machine Learning models. Identification of the right data and making it ready for extraction of further insights is the main work of a data engineer.Business AnalystA person who studies the business and analyzes the data to get insights from it is a Business Analyst. He or she is responsible for extracting the insights from the data at hand.Business Intelligence (BI) DeveloperA BI developer uses Machine Learning and Data Analytics techniques to work on a large amount of data. Proper representation of data to suit business decisions, using the latest tools for creation of intuitive dashboards is the role of a BI developer.  Human Machine Interface learning engineerCreating tools using machine learning techniques to ease the human machine interaction or automate decisions, is the role of a Human Machine Interface learning engineer. This person helps in generating choices for users to ease their work.Natural Language Processing (NLP) engineer or developerAs the name suggests, this person develops various techniques to process Natural Language constructs. Building applications or systems using machine learning techniques to build Natural Language based applications is their main task. They create multilingual Chatbots for use in websites and other applications.Why are Machine Learning Roles so popular?As mentioned above, the market growth of AI and ML has increased tremendously over the past years. The Machine Learning Techniques are applied in every domain including marketing, sales, product recommendations, brand retention, creating advertising, understanding the sentiments of customer, security, banking and more. Machine learning algorithms are also used in emails to ease the users work. This says a lot, and proves that a career in Machine Learning is in high demand as all businesses are incorporating various machine learning techniques and are improving their business.One can harness this popularity by skilling up with Machine Learning skills. Machine Learning models are now being used by every company, irrespective of their size--small or big, to get insights on their data and use these insights to improve the business. As every company wishes to grow faster, they are deploying more machine learning engineers to get their work done on time. Also, the migration of businesses to Cloud services for better security and scalability, has increased their requirement for more Machine Learning algorithms and models to cater to their needs.Introducing the Machine learning techniques and solutions has brought huge returns for businesses.  Machine Learning solution providers like Google, IBM, Microsoft etc. are investing in human resources for development of Machine Learning models and algorithms. The tools developed by them are popularly used by businesses to get early returns. It has been observed that there is significant increase in patents in Machine Learning domains since the past few years, indicating the quantum of work happening in this domain.Machine Learning SkillsLet’s visit a few important skills one must acquire to work in the domain of Machine Learning.Programming languagesKnowledge of programming is very important for a career in Machine Learning. Languages like Python and R are popularly used to develop applications using Machine Learning models and algorithms. Python, being the simplest and most flexible language, is very popular for AI and Machine Learning applications. These languages provide rich support of libraries for implementation of Machine Learning Algorithms. A person who is good in programming can work very efficiently in this domain.Mathematics and StatisticsThe base for Machine Learning is mathematics and statistics. Statistics applied to data help in understanding it in micro detail. Many machine learning models are based on the probability theory and require knowledge of linear algebra, transformations etc. A good understanding of statistics and probability increases the early adoption to Machine Learning domain.Analytical toolsA plethora of analytical tools are available where machine learning models are already implemented and made available for use. Also, these tools are very good for visualization purposes. Tools like IBM Cognos, PowerBI, Tableue etc are important to pursue a career as a  Machine Learning engineer.Machine Learning Algorithms and librariesTo become a master in this domain, one must master the libraries which are provided with various programming languages. The basic understanding of how machine learning algorithms work and are implemented is crucial.Data Modelling for Machine Learning based systemsData lies at the core of any Machine Learning application. So, modelling the data to suit the application of Machine Learning algorithms is an important task. Data modelling experts are the heart of development teams that develop machine learning based systems. SQL based solutions like Oracle, SQL Server, and NoSQL solutions are important for modelling data required for Machine Learning applications. MongoDB, DynamoDB, Riak are some important NOSQL based solutions available to process unstructured data for Machine Learning applications.Other than these skills, there are two other skills that may prove to be beneficial for those planning on a career in the Machine Learning domain:Natural Language processing techniquesFor E-commerce sites, customer feedback is very important and crucial in determining the roadmap of future products. Many customers give reviews for the products that they have used or give suggestions for improvement. These feedbacks and opinions are analyzed to gain more insights about the customers buying habits as well as about the products. This is part of natural language processing using Machine Learning. The likes of Google, Facebook, Twitter are developing machine learning algorithms for Natural Language Processing and are constantly working on improving their solutions. Knowledge of basics of Natural Language Processing techniques and libraries is must in the domain of Machine Learning.Image ProcessingKnowledge of Image and Video processing is very crucial when a solution is required to be developed in the area of security, weather forecasting, crop prediction etc. Machine Learning based solutions are very effective in these domains. Tools like Matlab, Octave, OpenCV are some important tools available to develop Machine Learning based solutions which require image or video processing.ConclusionMachine Learning is a technique to automate the tasks based on past experiences. This is among the most lucrative career choices right now and will continue to remain so in the future. Job opportunities are increasing day by day in this domain. Acquiring the right skills by opting for a proper Machine Learning course is important to grow in this domain. You can have an impressive career trajectory as a machine learning expert, provided you have the right skills and expertise.
5691
Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology ... Read More