Search

Machine learning Filter

Support Vector Machines in Machine Learning

While many classifiers exist that can classify linearly separable data such as logistic regression, Support Vector Machines can handle highly non-linear problems using a kernel trick which implicitly maps the input vectors to higher-dimensional feature spaces. The transformation rearranges the dataset in such a way that it is then linearly solvable. In this article we are going to look at how SVM works, learn about kernel functions, hyperparameters and pros and cons of SVM along with some of the real life applications of SVM. Support Vector Machines (SVMs), also known as support vector networks, are a family of extremely powerful models which use method based learning and can be used in classification and regression problems. They aim at finding decision boundaries that separate observations with differing class memberships. In other words, SVM is a discriminative classifier formally defined by a separating hyperplane.Method Based Learning There are several learning models namely:Association rules basedEnsemble method basedDeep Learning basedClustering method basedRegression Analysis basedBayesian method basedDimensionality reduction based Instance basedKernel method basedLet us understand what Kernel method based learning is all about.In simple terms, a kernel is a similarity function which is fed into a machine learning algorithm. It accepts two inputs and suggests the similarity. For example, suppose we want to classify images, the input data is a key-value pair (image, label). The image data is taken into consideration, features are computed, and a vector of features are fed into the Machine learning algorithm. But in the case of similarity functions, a kernel function can be defined which internally computes the similarity between images, and then feeds into the learning algorithm along with the images and label data. The outcome of this is a classifier. Perceptron frameworks or Support vector machines work with kernels and use vectors only. Here, the machine learning algorithms are expressed as dot products so that kernel functions can be used.Feature vectors generally prefer kernels. Its ease of computing makes it one of the key reasons, also, feature vectors need more storage space in comparison to dot products. You can writeMachine learning algorithms to use dot products and later map them to use kernels. This completely avoids the usage of feature vectors. This allows us to work with highly complex, efficient-to-compute, and yet high performing kernels effortlessly, without really developing multi-dimensional vectors.Kernel functionsLet us understand what kernel functions are: The figure shown below represents a 1D function using a simple 1-Dimensional example. Assume that given points are as follows, it will depict a vertical line and no other vertical lines will separate the dataset.Now, if we consider a 2-Dimensional representation, as shown in the figure below, there is a hyperplane (an arbitrary line in 2-Dimensions) which separates red and blue points, which can be separated using Support Vector Machines.As we keep increasing dimensional space, the need to be able to separate data will eventually decrease. This mapping, x -> (x, x2), is called the kernel function. In case of growing dimensional space, the computations become more complex and kernel trick needs to be applied to address these computations cheaply. What is Support Vector Machine? Support Vector Machine (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges. However,  it is mostly used in classification problems. In this algorithm, each data is plotted in n-dimensional space (where n is the number of features you have) with the value of each feature being the value of a particular coordinate. After that, we perform classification by locating the hyperplane which differentiates both the classes.Let us create a dataset to understand support vector classification:# importing scikit learn with make_blobs from sklearn.datasets.samples_generator import make_blobs# creating datasets X containing n_samples # Y containing two classes X, Y = make_blobs(n_samples=500, centers=2,        random_state=0, cluster_std=0.40)# plotting scatters plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring'); plt.show()Support vector machine is based on the concept of decision planes that define decision boundaries. A decision plane is one that separates between a set of objects with different class memberships. For example, in the figure mentioned below, there are objects which belong to either class Green or Red. The separating line defines a boundary on the right side of which all objects are Green and to the left of which all objects are Red. Any new object (white circle) falling to the right is labeled, i.e., classified, as Green (or classified as Red should it fall to the left of the separating line).Support vector machines not only draw a line between two classes, but consider a region about the line of some given width. Here’s an example of what it can look like:# creating line space between -1 to 3.5 xfit = np.linspace(-1, 3.5) # plotting scatter plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring') # plot a line between the different sets of data for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:     yfit = m * xfit + b     plt.plot(xfit, yfit, '-k')     plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',     color='#AAAAAA', alpha=0.4)plt.xlim(-1, 3.5); plt.show()Another scenario, where it is clear that a full separation of the Green and Red objects would require a curve (which is more complex than a line). Classification tasks based on drawing separating lines to distinguish between objects of different class memberships are known as hyperplane classifiers. Support Vector Machines are particularly suited to handle such tasks.The figure below shows the basic idea behind Support Vector Machines. Here you will see that the original objects (left side of the schematic) mapped, are rearranged using a set of mathematical functions called kernels. This process of rearranging objects is known as mapping or transformation. You will notice that the right side of the schematic is linearly separable. All we can do is find an optimal line that will separate red and green objects.What is a hyperplane?The goal of Support Vector Machine is to find the hyperplane which separates these two objects or classes. Let us consider another figure which shows some of the possible hyperplanes which can help in separating or dividing the dataset. It is the choice of the best hyperplane which is also the goal. The best hyperplane is defined by the extent to which a maximum margin is left for both classes. The margin is the distance between the hyperplane and the closest point in the classification.Let us consider two hyperplanes among all and then check the margins represented by M1 and M2. You will notice that margin M1 > M2, so the choice of the hyperplane which separates the best one is the new plane between the green and blue planes.How do we find the right hyperplane?Now, let us represent the new plane by a linear equation as: f(x) = ax + bLet us consider that this equation delivers all values ≥ 1 from the green triangle class and ≤ -1 for the gold star class. The distance of this plane from the closest points in both the classes is at least one; the modulus is one. f(x) ≥ 1 for triangles and f(x) ≤ 1 or |f(x)| = 1 for starThe distance between the hyperplane and the point can be computed using the following equation. M1 = |f(x)| / ||a|| = 1 / ||a||The total margin is 1 / ||a|| + 1 / ||a|| = 2 / ||a|. In order to maximize the separability, we will have to maximize the ||a|| value. This particular value is known as a weight vector. We can minimize the weight value which is a non-linear optimization task. One of the methods is to use the Karush-Kuhn-Tucker (KKT) condition, using the Lagrange multiplier λi.What is a support vector in SVM?Let's take an example of two points between the two attributes X and Y. We need to find a point between these two points that has a maximum distance between these points. This requirement is represented in the graph depicted next. The optimal point is depicted using the red circle.The maximum margin weight vector is parallel to the line from (1, 1) to (2, 3). The weight vector is at (1,2), and this becomes a decision boundary that is halfway between and in perpendicular, that passes through (1.5, 2). So, y = x1 +2x2 − 5.5 and the geometric margin is computed as √5. Following are the steps to compute SVMs: With w = (a, 2a) for the functions of the points (1,1) and (2,3) can be represented as shown here: a + 2a + ω0 = -1 for the point (1,1) 2a + 6a + ω0 = 1 for the point (2,3) The weights can be computed as follows:These are the support vectors:Lastly, the final equation is as follows:Large Margin IntuitionIn logistic regression, the output of linear function is taken and the value is squashed within the range of [0,1] using the sigmoid function. If the value is greater than a threshold value, say 0.5, label 1 is assigned else label 0.  In case of support vector machines, the linear function is taken and if the output is greater than 1 and we identify it with one class and if the output is -1, it is identified with another class. Since the threshold values are changed to 1 and -1 in SVM, we obtain this reinforcement range of values([-1,1]) which acts as margin. Cost Function and Gradient UpdatesIn the SVM algorithm, we maximize the margin between the data points and the hyperplane. The loss function that helps maximize the margin is called the hinge loss.Hinge loss function (function on the left can be represented as a function on the right)   If the predicted value and the actual value are of the same sign, the cost is 0 . If not, we calculate the loss value. We also add a regularization parameter the cost function. The objective of the regularization parameter is to balance the margin maximization and loss. After adding the regularization parameter, the cost functions looks as below.Loss function for SVM  Now that we have the loss function, we take partial derivatives with respect to the weights to find the gradients. Using gradients, we can update our weights.Gradients  When there is no misclassification, i.e our model correctly predicts the class of our data point, we only have to update the gradient from the regularization parameter.Gradient Update — No misclassification  When there is a misclassification, i.e our model makes a mistake on the prediction of the class of our data point, we include the loss along with the regularization parameter to perform gradient update.Gradient Update — Misclassification  Let us start with a code and import the necessary libraries:import pandas as pd  import numpy as np  from sklearn.model_selection import train_test_split  from sklearn.model_selection import cross_val_score, GridSearchCV  from sklearn import metrics  from sklearn.preprocessing import MinMaxScaler  pd.set_option('display.max_columns', None)Read the Wisconsin Breast Cancer dataset using pandas.read_csv function into an object 'data' from the current directorydata = pd.read_csv('wisconsin.csv')After reading the data, we have prepared the data as per requirement. Feature scaling is a method used to standardize the range of independent variables or features of data. The min-max scaling (or min-max normalization) shrinks the range of feature such that the range is in between 0 and 1 (or -1 to 1 if there are negative values).sclr = MinMaxScaler() predictor_sc = sclr.fit_transform(predictor)predictor_sc.shapeSplit the scaled data into train-test split:x_train_sc,x_test_sc, y_train, y_test = train_test_split(predictor_sc, target, test_size = 0.30, random_state=101) print("Scaled train and test split") print("x_train ",x_train_sc.shape) print("x_test ",x_test_sc.shape) print("y_train ",y_train.shape) print("y_test ",y_test.shape)Scaled train and test split x_train  (398, 30) x_test  (171, 30) y_train  (398,) y_test  (171,)But what happens when there is no clear hyperplane? Support Vector Machines can probably help you to find a separating hyperplane but only if it exists. There are certain cases when it is not possible to define a hyperplane, this happens due to noise in the data. Another possible reason can be a non-linear boundary. The first graph below depicts noise and the next one shows a non-linear boundary.There might be cases where there is no possibility to define a hyperplane, which can happen due to noise in the data. In fact, another reason can be a non-linear boundary as well. The following first graph depicts noise and the second one shows a non-linear boundary.For such problems which arise due to noise in the data, the best way is to reduce the margin itself and introduce slack.The non-linear boundary problem can be solved if we introduce a kernel. Some of the kernel functions that can be introduced are mentioned below:A radial basis function is a real-valued function whose value is dependent on the distance between the input and some fixed point. In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms.The RBF kernel on two samples x and x', represented as feature vectors in some input space, is defined as:Applying SVM with default hyperparametersLet us get back to the example and apply SVM after data pre-processsing with default hyperparameters. Linear Kernelfrom sklearn import svm svm2 = svm.SVC(kernel='linear') svm2 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) model2 = svm2.fit(x_train_sc, y_train) y_pred2 = svm2.predict(x_test_sc) print('Accuracy Score’) print(metrics.accuracy_score(y_test,y_pred2))Accuracy Score:0.9707602339181286Gaussian Kernelsvm3 = svm.SVC(kernel='rbf') svm3 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) model3 = svm3.fit(x_train_sc, y_train) y_pred3 = svm3.predict(x_test_sc) print('Accuracy Score’) print(metrics.accuracy_score(y_test, y_pred3))Accuracy Score:0.935672514619883Polynomial Kernelsvm4 = svm.SVC(kernel='poly') svm4SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='poly', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)model4 = svm4.fit(x_train_sc, y_train) y_pred4 = svm4.predict(x_test_sc) print('Accuracy Score’) print(metrics.accuracy_score(y_test,y_pred4)) Accuracy Score:0.6198830409356725How to tune Parameters of SVM? Kernel: Kernel in support vector machine is responsible for the transformation of the input data into the required format. Some of the kernels used in support vector machines are linear, polynomial and radial basis function (RBF). In order to create a non-linear hyperplane, we use RBF and Polynomial function, and for complex applications, you should use more advanced kernels to separate classes that are nonlinear in nature. With this transformation, you can obtain accurate classifiers. Regularization: Using the Scikit-learn’s C parameters and adjusting we can maintain regularization. C denotes a penalty parameter representing an error or any form of misclassification. This misclassification allows you to understand how much of the error is actually bearable. This helps you nullify the compensation between the misclassified term and the decision boundary. With a smaller C value, you obtain hyperplane of small margin and with a larger C value, hyperplane of larger value is obtained. Gamma: Lower value of Gamma creates a loose fit of the training dataset. On the other hand, a high value of gamma allows the model to get fit more appropriately. A low value of gamma will only provide consideration to the nearby points for the calculation of a separate plane. However, the high value of gamma will consider all the data-points to calculate the final separation line. Do we need to tune parameters always?? You do not need to tune parameter in all cases. There are inbuilt functions in sklearn tool kit which can be used. Tuning HyperparametersThe 'C' and 'gamma' hyperparameterC is the parameter for the soft margin cost function, which controls the influence of each individual support vector. This process involves trading error penalty for stability. Small C tends to emphasize the margin while ignoring the outliers in the training data(Soft Margin), while large C may tend to overfit the training data(Hard Margin). Thus for a very large values we can cause overfitting of the model and for a very small value of C we can cause underfitting.Thus the value of C must be chosen in such a manner that it generalises the unseen data well. The gamma parameter is the inverse of the standard deviation of the RBF kernel (Gaussian function), which is used as a similarity measure between two points. A small gamma value define a Gaussian function with a large variance. In this case, two points can be considered similar even if are far from each other. On the other hand, a large gamma value define a Gaussian function with a small variance and in this case, two points are considered similar just if they are close to each other. Taking kernel as linear and tuning C hyperparameterC_range=list(range(1,26)) acc_score=[] for c in C_range: svc = svm.SVC(kernel='linear', C=c) scores = cross_val_score(svc, predictor_sc, target, cv=10, scoring='accuracy') acc_score.append(scores.mean()) print(acc_score) [0.9772210699161695, 0.9772210699161695, 0.9806995938121164, 0.9824539797770286, 0.9789754558810818, 0.9789452078472042, 0.9806995938121164, 0.9789452078472041, 0.9789452078472041, 0.9789452078472041, 0.9806995938121164, 0.9789452078472041, 0.9789452078472041, 0.9772210699161695, 0.9772210699161695, 0.9772210699161695, 0.9772210699161695, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574, 0.9754666839512574]Let us visualize the above points:import matplotlib.pyplot as plt %matplotlib inline C_Val_list = list(range(1,26)) plt.plot(C_Val_list,acc_score) plt.xticks(np.arange(0,27,2)) plt.xlabel('Value of C for SVC') plt.ylabel('Cross-Validated Accuracy')From the plot we can see that accuracy has been close to 98% somewhere in between C=4 and C=5 and then it drops.#Taking a close look at the cross-validation accuracy in the range C(4,5) C_range=list(np.arange(4,5,0.2)) acc_score=[] for c in C_range: svc = svm.SVC(kernel='linear', C=c) scores = cross_val_score(svc, predictor_sc, target, cv=10, scoring='accuracy') acc_score.append(scores.mean()) print(acc_score) [0.9824539797770286, 0.9806995938121164, 0.9789754558810818, 0.9789754558810818, 0.9789754558810818] Accuracy score is highest for C=4Taking kernel as gaussian and tuning gamma hyperparametergamma_range=[0.0001,0.001,0.01,0.1,1,10,100] acc_score=[] for g in gamma_range: svc = svm.SVC(kernel='rbf', gamma=g) scores = cross_val_score(svc, predictor_sc, target, cv=10, scoring='accuracy') acc_score.append(scores.mean()) print(acc_score) [0.6274274047186933, 0.6274274047186933, 0.9195035001296346, 0.9561651974764496, 0.9806995938121164, 0.9420026359000951, 0.6274274047186933] Let us visualize the above points: gamma_range=[0.0001,0.001,0.01,0.1,1,10,100]# plotting the value of gamma for SVM versus the cross-validated accuracy plt.plot(gamma_range,acc_score) plt.xlabel('Value of gamma for SVC ') plt.xticks(np.arange(0.0001,100,5)) plt.ylabel('Cross-Validated Accuracy')Text(0,0.5,'Cross-Validated Accuracy')For gamma between 5 and 100 the kernel performs very poorly.Let us take a closer look at the cross-validated accuracy for gamma value in between 0 and 5.gamma_range=list(np.arange(0.1,5,0.1))  acc_score=[] for g in gamma_range:  svc = svm.SVC(kernel='rbf', gamma=g)  scores = cross_val_score(svc, predictor_sc, target, cv=10, scoring='accuracy') acc_score.append(scores.mean())  print(acc_score)[0.9561651974764496, 0.9718952553798289, 0.9754051075965776, 0.9737122979863452, 0.9806995938121164, 0.9806995938121164, 0.9806995938121164, 0.9806995938121164, 0.9806995938121164, 0.9806995938121164, 0.9789754558810818, 0.9754969319851352, 0.9754969319851352, 0.9754969319851352, 0.9754969319851352, 0.9737727940541007, 0.9737727940541007, 0.9737727940541007, 0.9737727940541007, 0.9720184080891883, 0.9720184080891883, 0.9720184080891883, 0.9720184080891883, 0.9720184080891883, 0.9720184080891883, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 0.9666925935528475, 0.9666925935528475, 0.9684167314838821, 0.9684167314838821, 0.9684167314838821, 0.9701711174487941, 0.9701711174487941, 0.96838540316308, 0.9649068792671333, 0.9649068792671333, 0.9649068792671333, 0.9649068792671333, 0.9649068792671333, 0.9649068792671333, 0.963152493302221, 0.963152493302221] gamma_range=list(np.arange(0.1,5,0.1)) plt.plot(gamma_range,acc_score) plt.xlabel('Value of gamma for SVC ') #plt.xticks(np.arange(0.0001,5,5)) plt.ylabel('Cross-Validated Accuracy') Text(0,0.5,'Cross-Validated Accuracy')The highest cross-validated accuracy for rbf kernel remains constant in between gamma=0.5 and gamma=1Taking polynomial kernel and tuning degree hyperparameterdegree=[2,3,4,5,6] acc_score=[] for d in degree: svc = svm.SVC(kernel='poly', degree=d) scores = cross_val_score(svc, predictor_sc, target, cv=10, scoring='accuracy') acc_score.append(scores.mean()) print(acc_score) [0.8350974418805635, 0.6450652493302222, 0.6274274047186933, 0.6274274047186933, 0.6274274047186933] plt.plot(degree,acc_score) plt.xlabel('degrees for SVC ') plt.ylabel('Cross-Validated Accuracy') Text(0,0.5,'Cross-Validated Accuracy')Score is high for second degree polynomial. There is drop in the accuracy score as degree of polynomial increases.Thus increase in polynomial degree results in high complexity of the model. Advantages and Disadvantages of Support Vector MachineAdvantages of SVMSVM Classifiers offer good accuracy and perform faster prediction compared to Naïve Bayes algorithm. SVM guarantees optimality due to the nature of Convex Optimization, the solution will always be global minimum not a local minimum. SVMcan be access it conveniently, be it from Python or Matlab. SVM can be used for both linearly separable as well as non-linearly separable data. Linearly separable data is the hard margin however, non-linearly separable data poses a soft margin. SVM provides compliance to the semi-supervised learning models as well. It can be implemented in both labelled and unlabelled data. The only thing it requires is a condition to the minimization problem which is known as the Transductive SVM. Feature Mapping used to be complex with respect to computation of the overall training performance of the model. With the help of Kernel Trick, SVM can carry out the feature mapping using simple dot product. SVM works well with a clear margin of separation and with high dimensional space.  Disadvantages of SVM SVM is not at all capable of handling text structures. It leads to bad performance as it results in the loss of sequential information. SVM is not suitable for large datasets because of its high training time and it also takes more time in training compared to Naïve Bayes. SVM works poorly with overlapping classes and is also sensitive to the type of kernel used. In cases where the number of features for each data point exceeds the number of training data samples , the SVM under performs. Applications of SVM in Real WorldSupport vector machines depend on supervised learning algorithms. The main goal of using SVM is to classify unseen data correctly. SVMs can be used to solve various real-world problems: Face detection – SVM can be used to classify parts of the image as a face and non-face and create a square boundary around the face. Text and hypertext categorization – SVM allows text and hypertext categorization for both inductive and transductive models. It uses training data for classification of documents into different categories. It categorizes based on the score generated and then compares with the threshold value. Classification of images – SVMs enhances search accuracy for image classification. In comparison to the traditional query-based searching techniques, SVM provides better accuracy. Bioinformatics – It includes classification of proteins and classification of cancer. SVM is used for identifying the classification of genes, patients on the basis of genes and other biological problems. Protein fold and remote homology detection – SVM algorithms are applied for protein remote homology detection. Handwriting recognition –  SVMs are used widely to recognize handwritten characters.  Generalized predictive control(GPC) – You can use SVM based GPC in order to control chaotic dynamics with useful parameters. Summary In this article, we looked at the machine learning algorithm, Support Vector Machine in detail. We have discussed the concept behind support vector machines, how it works, the process of implementation in Python.  We also looked into how to tune its parameters and make efficient models. Lastly, we came across the advantages and disadvantages of SVM along with various real world applications of support vector machines.We have covered most of the topics related to algorithms in our series of machine learning blogs,click here. If you are inspired by the opportunities provided by machine learning, enrol in our  Data Science and Machine Learning Courses for more lucrative career options in this landscape.

Support Vector Machines in Machine Learning

28634
Support Vector Machines in Machine Learning

While many classifiers exist that can classify linearly separable data such as logistic regression, Support Vector Machines can handle highly non-linear problems using a kernel trick which implicitly maps the input vectors to higher-dimensional feature spaces. The transformation rearranges the dataset in such a way that it is then linearly solvable. In this article we are going to look at how SVM works, learn about kernel functions, hyperparameters and pros and cons of SVM along with some of the real life applications of SVM. 

Support Vector Machines (SVMs), also known as support vector networks, are a family of extremely powerful models which use method based learning and can be used in classification and regression problems. They aim at finding decision boundaries that separate observations with differing class memberships. In other words, SVM is a discriminative classifier formally defined by a separating hyperplane.

Method Based Learning

Method Based Learning in Machine Learning

 There are several learning models namely:

  • Association rules based
  • Ensemble method based
  • Deep Learning based
  • Clustering method based
  • Regression Analysis based
  • Bayesian method based
  • Dimensionality reduction based
  • Instance based
  • Kernel method based

Let us understand what Kernel method based learning is all about.

In simple terms, a kernel is a similarity function which is fed into a machine learning algorithm. It accepts two inputs and suggests the similarity. For example, suppose we want to classify images, the input data is a key-value pair (image, label). The image data is taken into consideration, features are computed, and a vector of features are fed into the Machine learning algorithm. But in the case of similarity functions, a kernel function can be defined which internally computes the similarity between images, and then feeds into the learning algorithm along with the images and label data. The outcome of this is a classifier. 

Perceptron frameworks or Support vector machines work with kernels and use vectors only. Here, the machine learning algorithms are expressed as dot products so that kernel functions can be used.

Feature vectors generally prefer kernels. Its ease of computing makes it one of the key reasons, also, feature vectors need more storage space in comparison to dot products. You can write

Machine learning algorithms to use dot products and later map them to use kernels. This completely avoids the usage of feature vectors. This allows us to work with highly complex, efficient-to-compute, and yet high performing kernels effortlessly, without really developing multi-dimensional vectors.

Kernel functions

Let us understand what kernel functions are: The figure shown below represents a 1D function using a simple 1-Dimensional example. Assume that given points are as follows, it will depict a vertical line and no other vertical lines will separate the dataset.

Kernel functions in Machine Learning

Now, if we consider a 2-Dimensional representation, as shown in the figure below, there is a hyperplane (an arbitrary line in 2-Dimensions) which separates red and blue points, which can be separated using Support Vector Machines.

Kernel functions In Machine Learning

As we keep increasing dimensional space, the need to be able to separate data will eventually decrease. This mapping, x -> (x, x2), is called the kernel function. In case of growing dimensional space, the computations become more complex and kernel trick needs to be applied to address these computations cheaply. 

What is Support Vector Machine? 

Support Vector Machine (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges. However,  it is mostly used in classification problems. In this algorithm, each data is plotted in n-dimensional space (where n is the number of features you have) with the value of each feature being the value of a particular coordinate. After that, we perform classification by locating the hyperplane which differentiates both the classes.

Let us create a dataset to understand support vector classification:

# importing scikit learn with make_blobs 
from sklearn.datasets.samples_generator import make_blobs
# creating datasets X containing n_samples
# Y containing two classes
X, Y = make_blobs(n_samples=500, centers=2,
       random_state=0, cluster_std=0.40)
# plotting scatters
plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring');
plt.show()

Support Vector Machine Graph in Machine Learning

Support vector machine is based on the concept of decision planes that define decision boundaries. A decision plane is one that separates between a set of objects with different class memberships. For example, in the figure mentioned below, there are objects which belong to either class Green or Red. The separating line defines a boundary on the right side of which all objects are Green and to the left of which all objects are Red. Any new object (white circle) falling to the right is labeled, i.e., classified, as Green (or classified as Red should it fall to the left of the separating line).

Support vector machine Boundaries in machine Learning

Support vector machines not only draw a line between two classes, but consider a region about the line of some given width. Here’s an example of what it can look like:

# creating line space between -1 to 3.5 
xfit = np.linspace(-1, 3.5) 
# plotting scatter 
plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring')

# plot a line between the different sets of data 
for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: 
    yfit = m * xfit + b 
    plt.plot(xfit, yfit, '-k') 
    plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', 
    color='#AAAAAA', alpha=0.4)
plt.xlim(-1, 3.5);
plt.show()

Support vector machine Graph in Machine Learning

Another scenario, where it is clear that a full separation of the Green and Red objects would require a curve (which is more complex than a line). Classification tasks based on drawing separating lines to distinguish between objects of different class memberships are known as hyperplane classifiers. Support Vector Machines are particularly suited to handle such tasks.

hyperplane classifiers in Machine Learning

The figure below shows the basic idea behind Support Vector Machines. Here you will see that the original objects (left side of the schematic) mapped, are rearranged using a set of mathematical functions called kernels. This process of rearranging objects is known as mapping or transformation. You will notice that the right side of the schematic is linearly separable. All we can do is find an optimal line that will separate red and green objects.

 kernels in Machine Learning

What is a hyperplane?

Hyperplane in Machine Learning

The goal of Support Vector Machine is to find the hyperplane which separates these two objects or classes. Let us consider another figure which shows some of the possible hyperplanes which can help in separating or dividing the dataset. It is the choice of the best hyperplane which is also the goal. The best hyperplane is defined by the extent to which a maximum margin is left for both classes. The margin is the distance between the hyperplane and the closest point in the classification.

Hyperplane in Machine Learning

Let us consider two hyperplanes among all and then check the margins represented by M1 and M2. You will notice that margin M1 > M2, so the choice of the hyperplane which separates the best one is the new plane between the green and blue planes.

Hyperplane in Machine Learning

How do we find the right hyperplane?

Now, let us represent the new plane by a linear equation as: 

f(x) = ax + b

Let us consider that this equation delivers all values ≥ 1 from the green triangle class and ≤ -1 for the gold star class. The distance of this plane from the closest points in both the classes is at least one; the modulus is one. 

f(x) ≥ 1 for triangles and f(x) ≤ 1 or |f(x)| = 1 for star

The distance between the hyperplane and the point can be computed using the following equation. 

M1 = |f(x)| / ||a|| = 1 / ||a||

The total margin is 1 / ||a|| + 1 / ||a|| = 2 / ||a|

In order to maximize the separability, we will have to maximize the ||a|| value. This particular value is known as a weight vector. We can minimize the weight value which is a non-linear optimization task. One of the methods is to use the Karush-Kuhn-Tucker (KKT) condition, using the Lagrange multiplier λi.

Hyperplane Equation in Machine Learning

Hyperplane Graph in Machine Learning

What is a support vector in SVM?

support vector in SVM

Let's take an example of two points between the two attributes X and Y. We need to find a point between these two points that has a maximum distance between these points. This requirement is represented in the graph depicted next. The optimal point is depicted using the red circle.

support vector in SVM

The maximum margin weight vector is parallel to the line from (1, 1) to (2, 3). The weight vector is at (1,2), and this becomes a decision boundary that is halfway between and in perpendicular, that passes through (1.5, 2)

So, y = x1 +2x2 − 5.5 and the geometric margin is computed as √5

Following are the steps to compute SVMs: 

With w = (a, 2a) for the functions of the points (1,1) and (2,3) can be represented as shown here: 

a + 2a + ω0 = -1 for the point (1,1) 

2a + 6a + ω0 = 1 for the point (2,3) 

The weights can be computed as follows:

support vector Equations in SVM

support vector Equations in SVM

These are the support vectors:

support vectors in Machine Learning

Lastly, the final equation is as follows:

support vector Final Equations in SVM

Large Margin Intuition

In logistic regression, the output of linear function is taken and the value is squashed within the range of [0,1] using the sigmoid function. If the value is greater than a threshold value, say 0.5, label 1 is assigned else label 0.  

In case of support vector machines, the linear function is taken and if the output is greater than 1 and we identify it with one class and if the output is -1, it is identified with another class. Since the threshold values are changed to 1 and -1 in SVM, we obtain this reinforcement range of values([-1,1]) which acts as margin. 

Cost Function and Gradient Updates

In the SVM algorithm, we maximize the margin between the data points and the hyperplane. The loss function that helps maximize the margin is called the hinge loss.

Cost Function and Gradient Updates in Machine LearningHinge loss function (function on the left can be represented as a function on the right)   If the predicted value and the actual value are of the same sign, the cost is 0 . If not, we calculate the loss value. We also add a regularization parameter the cost function. The objective of the regularization parameter is to balance the margin maximization and loss. After adding the regularization parameter, the cost functions looks as below.

Cost Function and Gradient Updates in Machine LearningLoss function for SVM  Now that we have the loss function, we take partial derivatives with respect to the weights to find the gradients. Using gradients, we can update our weights.

Cost Function and Gradient Updates in Machine LearningGradients  When there is no misclassification, i.e our model correctly predicts the class of our data point, we only have to update the gradient from the regularization parameter.

Cost Function and Gradient Updates in Machine LearningGradient Update — No misclassification  When there is a misclassification, i.e our model makes a mistake on the prediction of the class of our data point, we include the loss along with the regularization parameter to perform gradient update.

Gradient Update — Misclassification  Let us start with a code and import the necessary libraries:

import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import cross_val_score, GridSearchCV 
from sklearn import metrics 
from sklearn.preprocessing import MinMaxScaler 
pd.set_option('display.max_columns', None)

Read the Wisconsin Breast Cancer dataset using pandas.read_csv function into an object 'data' from the current directory

data = pd.read_csv('wisconsin.csv')

After reading the data, we have prepared the data as per requirement. Feature scaling is a method used to standardize the range of independent variables or features of data. The min-max scaling (or min-max normalization) shrinks the range of feature such that the range is in between 0 and 1 (or -1 to 1 if there are negative values).

sclr = MinMaxScaler()
predictor_sc = sclr.fit_transform(predictor)predictor_sc.shape

Split the scaled data into train-test split:

x_train_sc,x_test_sc, y_train, y_test = train_test_split(predictor_sc, target, test_size = 0.30, random_state=101)
print("Scaled train and test split")
print("x_train ",x_train_sc.shape)
print("x_test ",x_test_sc.shape)
print("y_train ",y_train.shape)
print("y_test ",y_test.shape)
Scaled train and test split
x_train  (398, 30)
x_test  (171, 30)
y_train  (398,)
y_test  (171,)

But what happens when there is no clear hyperplane? 

Support Vector Machines can probably help you to find a separating hyperplane but only if it exists. There are certain cases when it is not possible to define a hyperplane, this happens due to noise in the data. Another possible reason can be a non-linear boundary. The first graph below depicts noise and the next one shows a non-linear boundary.

There might be cases where there is no possibility to define a hyperplane, which can happen due to noise in the data. In fact, another reason can be a non-linear boundary as well. The following first graph depicts noise and the second one shows a non-linear boundary.

Hyperplane Graph in Machine Learning

Hyperplane Graph in Machine Learning

For such problems which arise due to noise in the data, the best way is to reduce the margin itself and introduce slack.

Hyperplane Data in Machine Learning

The non-linear boundary problem can be solved if we introduce a kernel. Some of the kernel functions that can be introduced are mentioned below:

non-linear boundary problem in Machine Learning

A radial basis function is a real-valued function whose value is dependent on the distance between the input and some fixed point. In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms.

The RBF kernel on two samples x and x', represented as feature vectors in some input space, is defined as:

RBF kernel Equation in Machine Learning

Applying SVM with default hyperparameters

Let us get back to the example and apply SVM after data pre-processsing with default hyperparameters. 

Linear Kernel

from sklearn import svm 
svm2 = svm.SVC(kernel='linear') 
svm2

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear', 
max_iter=-1, probability=False, random_state=None, shrinking=True, 
tol=0.001, verbose=False)

model2 = svm2.fit(x_train_sc, y_train) 
y_pred2 = svm2.predict(x_test_sc) 
print('Accuracy Score’) 
print(metrics.accuracy_score(y_test,y_pred2))
Accuracy Score:0.9707602339181286

Gaussian Kernel

svm3 = svm.SVC(kernel='rbf') 
svm3 
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', 
max_iter=-1, probability=False, random_state=None, shrinking=True, 
tol=0.001, verbose=False) 
model3 = svm3.fit(x_train_sc, y_train) 
y_pred3 = svm3.predict(x_test_sc) 
print('Accuracy Score’) 
print(metrics.accuracy_score(y_test, y_pred3))
Accuracy Score:0.935672514619883

Polynomial Kernel

svm4 = svm.SVC(kernel='poly') 
svm4
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape='ovr', degree=3, gamma='auto', kernel='poly', 
max_iter=-1, probability=False, random_state=None, shrinking=True, 
tol=0.001, verbose=False)
model4 = svm4.fit(x_train_sc, y_train) 
y_pred4 = svm4.predict(x_test_sc) 
print('Accuracy Score’) 
print(metrics.accuracy_score(y_test,y_pred4)) 
Accuracy Score:0.6198830409356725

How to tune Parameters of SVM? 

Kernel: Kernel in support vector machine is responsible for the transformation of the input data into the required format. Some of the kernels used in support vector machines are linear, polynomial and radial basis function (RBF). In order to create a non-linear hyperplane, we use RBF and Polynomial function, and for complex applications, you should use more advanced kernels to separate classes that are nonlinear in nature. With this transformation, you can obtain accurate classifiers. 

Regularization: Using the Scikit-learn’s C parameters and adjusting we can maintain regularization. C denotes a penalty parameter representing an error or any form of misclassification. This misclassification allows you to understand how much of the error is actually bearable. This helps you nullify the compensation between the misclassified term and the decision boundary. With a smaller C value, you obtain hyperplane of small margin and with a larger C value, hyperplane of larger value is obtained. 

Gamma: Lower value of Gamma creates a loose fit of the training dataset. On the other hand, a high value of gamma allows the model to get fit more appropriately. A low value of gamma will only provide consideration to the nearby points for the calculation of a separate plane. However, the high value of gamma will consider all the data-points to calculate the final separation line. 

Do we need to tune parameters always?? 

You do not need to tune parameter in all cases. There are inbuilt functions in sklearn tool kit which can be used. 

Tuning Hyperparameters

The 'C' and 'gamma' hyperparameter

C is the parameter for the soft margin cost function, which controls the influence of each individual support vector. This process involves trading error penalty for stability. Small C tends to emphasize the margin while ignoring the outliers in the training data(Soft Margin), while large C may tend to overfit the training data(Hard Margin). Thus for a very large values we can cause overfitting of the model and for a very small value of C we can cause underfitting.Thus the value of C must be chosen in such a manner that it generalises the unseen data well. 

The gamma parameter is the inverse of the standard deviation of the RBF kernel (Gaussian function), which is used as a similarity measure between two points. A small gamma value define a Gaussian function with a large variance. In this case, two points can be considered similar even if are far from each other. On the other hand, a large gamma value define a Gaussian function with a small variance and in this case, two points are considered similar just if they are close to each other. 

Taking kernel as linear and tuning C hyperparameter

C_range=list(range(1,26))
acc_score=[]
for c in C_range:
svc = svm.SVC(kernel='linear', C=c)
scores = cross_val_score(svc, predictor_sc, target, cv=10,
scoring='accuracy')
acc_score.append(scores.mean())
print(acc_score)

[0.9772210699161695, 0.9772210699161695, 0.9806995938121164,
0.9824539797770286, 0.9789754558810818, 0.9789452078472042,
0.9806995938121164, 0.9789452078472041, 0.9789452078472041,
0.9789452078472041, 0.9806995938121164, 0.9789452078472041,
0.9789452078472041, 0.9772210699161695, 0.9772210699161695,
0.9772210699161695, 0.9772210699161695, 0.9754666839512574,
0.9754666839512574, 0.9754666839512574, 0.9754666839512574,
0.9754666839512574, 0.9754666839512574, 0.9754666839512574,
0.9754666839512574]

Let us visualize the above points:

import matplotlib.pyplot as plt
%matplotlib inline
C_Val_list = list(range(1,26))

plt.plot(C_Val_list,acc_score)
plt.xticks(np.arange(0,27,2))
plt.xlabel('Value of C for SVC')
plt.ylabel('Cross-Validated Accuracy')

From the plot we can see that accuracy has been close to 98% somewhere in between C=4 and C=5 and then it drops.

#Taking a close look at the cross-validation accuracy in the range C(4,5) 
C_range=list(np.arange(4,5,0.2)) 
acc_score=[]
for c in C_range:
svc = svm.SVC(kernel='linear', C=c)
scores = cross_val_score(svc, predictor_sc, target, cv=10,
scoring='accuracy')
acc_score.append(scores.mean())
print(acc_score) 

[0.9824539797770286, 0.9806995938121164, 0.9789754558810818,
0.9789754558810818, 0.9789754558810818] 

Accuracy score is highest for C=4

Taking kernel as gaussian and tuning gamma hyperparameter

gamma_range=[0.0001,0.001,0.01,0.1,1,10,100] 
acc_score=[] 
for g in gamma_range: 
svc = svm.SVC(kernel='rbf', gamma=g) 
scores = cross_val_score(svc, predictor_sc, target, cv=10,
scoring='accuracy')
acc_score.append(scores.mean()) 
print(acc_score)

[0.6274274047186933, 0.6274274047186933, 0.9195035001296346,
0.9561651974764496, 0.9806995938121164, 0.9420026359000951,
0.6274274047186933]

Let us visualize the above points: 
gamma_range=[0.0001,0.001,0.01,0.1,1,10,100]
# plotting the value of gamma for SVM versus the cross-validated accuracy 
plt.plot(gamma_range,acc_score) 
plt.xlabel('Value of gamma for SVC ') 
plt.xticks(np.arange(0.0001,100,5)) 
plt.ylabel('Cross-Validated Accuracy')
Text(0,0.5,'Cross-Validated Accuracy')

For gamma between 5 and 100 the kernel performs very poorly.
Let us take a closer look at the cross-validated accuracy for gamma value in between 0 and 5.

gamma_range=list(np.arange(0.1,5,0.1)) 
acc_score=[]
for g in gamma_range: 
svc = svm.SVC(kernel='rbf', gamma=g) 
scores = cross_val_score(svc, predictor_sc, target, cv=10,
scoring='accuracy')
acc_score.append(scores.mean()) 
print(acc_score)


[0.9561651974764496, 0.9718952553798289, 0.9754051075965776, 
0.9737122979863452, 0.9806995938121164, 0.9806995938121164, 
0.9806995938121164, 0.9806995938121164, 0.9806995938121164, 
0.9806995938121164, 0.9789754558810818, 0.9754969319851352, 
0.9754969319851352, 0.9754969319851352, 0.9754969319851352, 
0.9737727940541007, 0.9737727940541007, 0.9737727940541007, 
0.9737727940541007, 0.9720184080891883, 0.9720184080891883, 
0.9720184080891883, 0.9720184080891883, 0.9720184080891883, 
0.9720184080891883, 0.9702326938034741, 0.9702326938034741, 
0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 
0.9702326938034741, 0.9702326938034741, 0.9702326938034741, 
0.9666925935528475, 0.9666925935528475, 0.9684167314838821, 
0.9684167314838821, 0.9684167314838821, 0.9701711174487941, 
0.9701711174487941, 0.96838540316308, 0.9649068792671333, 
0.9649068792671333, 0.9649068792671333, 0.9649068792671333, 
0.9649068792671333, 0.9649068792671333, 0.963152493302221, 
0.963152493302221]

gamma_range=list(np.arange(0.1,5,0.1))

plt.plot(gamma_range,acc_score)
plt.xlabel('Value of gamma for SVC ')
#plt.xticks(np.arange(0.0001,5,5))
plt.ylabel('Cross-Validated Accuracy')

Text(0,0.5,'Cross-Validated Accuracy')

The highest cross-validated accuracy for rbf kernel remains constant in between gamma=0.5 and gamma=1

Taking polynomial kernel and tuning degree hyperparameter

degree=[2,3,4,5,6] 
acc_score=[]
for d in degree:
svc = svm.SVC(kernel='poly', degree=d)
scores = cross_val_score(svc, predictor_sc, target, cv=10,
scoring='accuracy')
acc_score.append(scores.mean()) 
print(acc_score)
 
[0.8350974418805635, 0.6450652493302222, 0.6274274047186933,
0.6274274047186933, 0.6274274047186933]

plt.plot(degree,acc_score) 
plt.xlabel('degrees for SVC ') 
plt.ylabel('Cross-Validated Accuracy')

Text(0,0.5,'Cross-Validated Accuracy')

Score is high for second degree polynomial. There is drop in the accuracy score as degree of polynomial increases.Thus increase in polynomial degree results in high complexity of the model. 

Advantages and Disadvantages of Support Vector Machine

Advantages of SVM

  • SVM Classifiers offer good accuracy and perform faster prediction compared to Naïve Bayes algorithm. 
  • SVM guarantees optimality due to the nature of Convex Optimization, the solution will always be global minimum not a local minimum. 
  • SVMcan be access it conveniently, be it from Python or Matlab. 
  • SVM can be used for both linearly separable as well as non-linearly separable data. Linearly separable data is the hard margin however, non-linearly separable data poses a soft margin. 
  • SVM provides compliance to the semi-supervised learning models as well. It can be implemented in both labelled and unlabelled data. The only thing it requires is a condition to the minimization problem which is known as the Transductive SVM. 
  • Feature Mapping used to be complex with respect to computation of the overall training performance of the model. With the help of Kernel Trick, SVM can carry out the feature mapping using simple dot product. 
  • SVM works well with a clear margin of separation and with high dimensional space.  

Disadvantages of SVM 

  • SVM is not at all capable of handling text structures. It leads to bad performance as it results in the loss of sequential information. 
  • SVM is not suitable for large datasets because of its high training time and it also takes more time in training compared to Naïve Bayes. 
  • SVM works poorly with overlapping classes and is also sensitive to the type of kernel used. 
  • In cases where the number of features for each data point exceeds the number of training data samples , the SVM under performs. 

Applications of SVM in Real World

Support vector machines depend on supervised learning algorithms. The main goal of using SVM is to classify unseen data correctly. SVMs can be used to solve various real-world problems: 

  • Face detection – SVM can be used to classify parts of the image as a face and non-face and create a square boundary around the face. 
  • Text and hypertext categorization – SVM allows text and hypertext categorization for both inductive and transductive models. It uses training data for classification of documents into different categories. It categorizes based on the score generated and then compares with the threshold value. 
  • Classification of images – SVMs enhances search accuracy for image classification. In comparison to the traditional query-based searching techniques, SVM provides better accuracy. 
  • Bioinformatics – It includes classification of proteins and classification of cancer. SVM is used for identifying the classification of genes, patients on the basis of genes and other biological problems. 
  • Protein fold and remote homology detection – SVM algorithms are applied for protein remote homology detection. 
  • Handwriting recognition –  SVMs are used widely to recognize handwritten characters.  
  • Generalized predictive control(GPC) – You can use SVM based GPC in order to control chaotic dynamics with useful parameters. 

Summary 

In this article, we looked at the machine learning algorithm, Support Vector Machine in detail. We have discussed the concept behind support vector machines, how it works, the process of implementation in Python.  We also looked into how to tune its parameters and make efficient models. Lastly, we came across the advantages and disadvantages of SVM along with various real world applications of support vector machines.

We have covered most of the topics related to algorithms in our series of machine learning blogs,click here. If you are inspired by the opportunities provided by machine learning, enrol in our  Data Science and Machine Learning Courses for more lucrative career options in this landscape.

Priyankur

Priyankur Sarkar

Data Science Enthusiast

Priyankur Sarkar loves to play with data and get insightful results out of it, then turn those data insights and results in business growth. He is an electronics engineer with a versatile experience as an individual contributor and leading teams, and has actively worked towards building Machine Learning capabilities for organizations.

Join the Discussion

Your email address will not be published. Required fields are marked *

Suggested Blogs

Types of Probability Distributions Every Data Science Expert Should know

Data Science has become one of the most popular interdisciplinary fields. It uses scientific approaches, methods, algorithms, and operations to obtain facts and insights from unstructured, semi-structured, and structured datasets. Organizations use these collected facts and insights for efficient production, business growth, and to predict user requirements. Probability distribution plays a significant role in performing data analysis equipping a dataset for training a model. In this article, you will learn about the types of Probability Distribution, random variables, types of discrete distributions, and continuous distribution.  What is Probability Distribution? A Probability Distribution is a statistical method that determines all the probable values and possibilities that a random variable can deliver from a particular range. This range of values will have a lower bound and an upper bound, which we call the minimum and the maximum possible values.  Various factors on which plotting of a value depends are standard deviation, mean (or average), skewness, and kurtosis. All of these play a significant role in Data science as well. We can use probability distribution in physics, engineering, finance, data analysis, machine learning, etc. Significance of Probability distributions in Data Science In a way, most of the data science and machine learning operations are dependent on several assumptions about the probability of your data. Probability distribution allows a skilled data analyst to recognize and comprehend patterns from large data sets; that is, otherwise, entirely random variables and values. Thus, it makes probability distribution a toolkit based on which we can summarize a large data set. The density function and distribution techniques can also help in plotting data, thus supporting data analysts to visualize data and extract meaning. General Properties of Probability Distributions Probability distribution determines the likelihood of any outcome. The mathematical expression takes a specific value of x and shows the possibility of a random variable with p(x). Some general properties of the probability distribution are – The total of all probabilities for any possible value becomes equal to 1. In a probability distribution, the possibility of finding any specific value or a range of values must lie between 0 and 1. Probability distributions tell us the dispersal of the values from the random variable. Consequently, the type of variable also helps determine the type of probability distribution.Common Data Types Before jumping directly into explaining the different probability distributions, let us first understand the different types of probability distributions or the main categories of the probability distribution. Data analysts and data engineers have to deal with a broad spectrum of data, such as text, numerical, image, audio, voice, and many more. Each of these have a specific means to be represented and analyzed. Data in a probability distribution can either be discrete or continuous. Numerical data especially takes one of the two forms. Discrete data: They take specific values where the outcome of the data remains fixed. Like, for example, the consequence of rolling two dice or the number of overs in a T-20 match. In the first case, the result lies between 2 and 12. In the second case, the event will be less than 20. Different types of discrete distributions that use discrete data are: Binomial Distribution Hypergeometric Distribution Geometric Distribution Poisson Distribution Negative Binomial Distribution Multinomial Distribution  Continuous data: It can obtain any value irrespective of bound or limit. Example: weight, height, any trigonometric value, age, etc. Different types of continuous distributions that use continuous data are: Beta distribution Cauchy distribution Exponential distribution Gamma distribution Logistic distribution Weibull distribution Types of Probability Distribution explained Here are some of the popular types of Probability distributions used by data science professionals. (Try all the code using Jupyter Notebook) Normal Distribution: It is also known as Gaussian distribution. It is one of the simplest types of continuous distribution. This probability distribution is symmetrical around its mean value. It also shows that data at close proximity of the mean is frequently occurring, compared to data that is away from it. Here, mean = 0, variance = finite valueHere, you can see 0 at the center is the Normal Distribution for different mean and variance values. Here is a code example showing the use of Normal Distribution: from scipy.stats import norm  import matplotlib.pyplot as mpl  import numpy as np  def normalDist() -> None:      fig, ax = mpl.subplots(1, 1)      mean, var, skew, kurt = norm.stats(moments = 'mvsk')      x = np.linspace(norm.ppf(0.01),  norm.ppf(0.99), 100)      ax.plot(x, norm.pdf(x),          'r-', lw = 5, alpha = 0.6, label = 'norm pdf')      ax.plot(x, norm.cdf(x),          'b-', lw = 5, alpha = 0.6, label = 'norm cdf')      vals = norm.ppf([0.001, 0.5, 0.999])      np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))      r = norm.rvs(size = 1000)      ax.hist(r, normed = True, histtype = 'stepfilled', alpha = 0.2)      ax.legend(loc = 'best', frameon = False)      mpl.show()  normalDist() Output: Bernoulli Distribution: It is the simplest type of probability distribution. It is a particular case of Binomial distribution, where n=1. It means a binomial distribution takes 'n' number of trials, where n > 1 whereas, the Bernoulli distribution takes only a single trial.   Probability Mass Function of a Bernoulli’s Distribution is:  where p = probability of success and q = probability of failureHere is a code example showing the use of Bernoulli Distribution: from scipy.stats import bernoulli  import seaborn as sb    def bernoulliDist():      data_bern = bernoulli.rvs(size=1200, p = 0.7)      ax = sb.distplot(          data_bern,           kde = True,           color = 'g',           hist_kws = {'alpha' : 1},          kde_kws = {'color': 'y', 'lw': 3, 'label': 'KDE'})      ax.set(xlabel = 'Bernouli Values', ylabel = 'Frequency Distribution')  bernoulliDist() Output:Continuous Uniform Distribution: In this type of continuous distribution, all outcomes are equally possible; each variable gets the same probability of hit as a consequence. This symmetric probabilistic distribution has random variables at an equal interval, with the probability of 1/(b-a). Here is a code example showing the use of Uniform Distribution: from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def uniformDist():      sb.distplot(random.uniform(size = 1200), hist = True)      mpl.show()  uniformDist() Output: Log-Normal Distribution: A Log-Normal distribution is another type of continuous distribution of logarithmic values that form a normal distribution. We can transform a log-normal distribution into a normal distribution. Here is a code example showing the use of Log-Normal Distribution import matplotlib.pyplot as mpl  def lognormalDist():      muu, sig = 3, 1      s = np.random.lognormal(muu, sig, 1000)      cnt, bins, ignored = mpl.hist(s, 80, normed = True, align ='mid', color = 'y')      x = np.linspace(min(bins), max(bins), 10000)      calc = (np.exp( -(np.log(x) - muu) **2 / (2 * sig**2))             / (x * sig * np.sqrt(2 * np.pi)))      mpl.plot(x, calc, linewidth = 2.5, color = 'g')      mpl.axis('tight')      mpl.show()  lognormalDist() Output: Pareto Distribution: It is one of the most critical types of continuous distribution. The Pareto Distribution is a skewed statistical distribution that uses power-law to describe quality control, scientific, social, geophysical, actuarial, and many other types of observable phenomena. The distribution shows slow or heavy-decaying tails in the plot, where much of the data reside at its extreme end. Here is a code example showing the use of Pareto Distribution – import numpy as np  from matplotlib import pyplot as plt  from scipy.stats import pareto  def paretoDist():      xm = 1.5        alp = [2, 4, 6]       x = np.linspace(0, 4, 800)      output = np.array([pareto.pdf(x, scale = xm, b = a) for a in alp])      plt.plot(x, output.T)      plt.show()  paretoDist() Output:Exponential Distribution: It is a type of continuous distribution that determines the time elapsed between events (in a Poisson process). Let’s suppose, that you have the Poisson distribution model that holds the number of events happening in a given period. We can model the time between each birth using an exponential distribution.Here is a code example showing the use of Pareto Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb  def expDist():      sb.distplot(random.exponential(size = 1200), hist = True)      mpl.show()   expDist()Output:Types of the Discrete probability distribution – There are various types of Discrete Probability Distribution a Data science aspirant should know about. Some of them are – Binomial Distribution: It is one of the popular discrete distributions that determine the probability of x success in the 'n' trial. We can use Binomial distribution in situations where we want to extract the probability of SUCCESS or FAILURE from an experiment or survey which went through multiple repetitions. A Binomial distribution holds a fixed number of trials. Also, a binomial event should be independent, and the probability of obtaining failure or success should remain the same. Here is a code example showing the use of Binomial Distribution – from numpy import random  import matplotlib.pyplot as mpl  import seaborn as sb    def binomialDist():      sb.distplot(random.normal(loc = 50, scale = 6, size = 1200), hist = False, label = 'normal')      sb.distplot(random.binomial(n = 100, p = 0.6, size = 1200), hist = False, label = 'binomial')      plt.show()    binomialDist() Output:Geometric Distribution: The geometric probability distribution is one of the crucial types of continuous distributions that determine the probability of any event having likelihood ‘p’ and will happen (occur) after 'n' number of Bernoulli trials. Here 'n' is a discrete random variable. In this distribution, the experiment goes on until we encounter either a success or a failure. The experiment does not depend on the number of trials. Here is a code example showing the use of Geometric Distribution – import matplotlib.pyplot as mpl  def probability_to_occur_at(attempt, probability):      return (1-p)**(attempt - 1) * probability  p = 0.3  attempt = 4  attempts_to_show = range(21)[1:]  print('Possibility that this event will occur on the 7th try: ', probability_to_occur_at(attempt, p))  mpl.xlabel('Number of Trials')  mpl.ylabel('Probability of the Event')  barlist = mpl.bar(attempts_to_show, height=[probability_to_occur_at(x, p) for x in attempts_to_show], tick_label=attempts_to_show)  barlist[attempt].set_color('g')  mpl.show() Output:Poisson Distribution: Poisson distribution is one of the popular types of discrete distribution that shows how many times an event has the possibility of occurrence in a specific set of time. We can obtain this by limiting the Bernoulli distribution from 0 to infinity. Data analysts often use the Poisson distributions to comprehend independent events occurring at a steady rate in a given time interval. Here is a code example showing the use of Poisson Distribution from scipy.stats import poisson  import seaborn as sb  import numpy as np  import matplotlib.pyplot as mpl  def poissonDist():       mpl.figure(figsize = (10, 10))      data_binom = poisson.rvs(mu = 3, size = 5000)      ax = sb.distplot(data_binom, kde=True, color = 'g',                       bins=np.arange(data_binom.min(), data_binom.max() + 1),                       kde_kws={'color': 'y', 'lw': 4, 'label': 'KDE'})      ax.set(xlabel = 'Poisson Distribution', ylabel='Data Frequency')      mpl.show()      poissonDist() Output:Multinomial Distribution: A multinomial distribution is another popular type of discrete probability distribution that calculates the outcome of an event having two or more variables. The term multi means more than one. The Binomial distribution is a particular type of multinomial distribution with two possible outcomes - true/false or heads/tails. Here is a code example showing the use of Multinomial Distribution – import numpy as np  import matplotlib.pyplot as mpl  np.random.seed(99)   n = 12                      pvalue = [0.3, 0.46, 0.22]     s = []  p = []     for size in np.logspace(2, 3):      outcomes = np.random.multinomial(n, pvalue, size=int(size))        prob = sum((outcomes[:,0] == 7) & (outcomes[:,1] == 2) & (outcomes[:,2] == 3))/len(outcomes)      p.append(prob)      s.append(int(size))  fig1 = mpl.figure()  mpl.plot(s, p, 'o-')  mpl.plot(s, [0.0248]*len(s), '--r')  mpl.grid()  mpl.xlim(xmin = 0)  mpl.xlabel('Number of Events')  mpl.ylabel('Function p(X = K)') Output:Negative Binomial Distribution: It is also a type of discrete probability distribution for random variables having negative binomial events. It is also known as the Pascal distribution, where the random variable tells us the number of repeated trials produced during a specific number of experiments.  Here is a code example showing the use of Negative Binomial Distribution – import matplotlib.pyplot as mpl   import numpy as np   from scipy.stats import nbinom    x = np.linspace(0, 6, 70)   gr, kr = 0.3, 0.7        g = nbinom.ppf(x, gr, kr)   s = nbinom.pmf(x, gr, kr)   mpl.plot(x, g, "*", x, s, "r--") Output: Apart from these mentioned distribution types, various other types of probability distributions exist that data science professionals can use to extract reliable datasets. In the next topic, we will understand some interconnections & relationships between various types of probability distributions. Relationship between various Probability distributions – It is surprising to see that different types of probability distributions are interconnected. In the chart shown below, the dashed line is for limited connections between two families of distribution, whereas the solid lines show the exact relationship between them in terms of transformation, variable, type, etc. Conclusion  Probability distributions are prevalent among data analysts and data science professionals because of their wide usage. Today, companies and enterprises hire data science professionals in many sectors, namely, computer science, health, insurance, engineering, and even social science, where probability distributions appear as fundamental tools for application. It is essential for Data analysts and data scientists. to know the core of statistics. Probability Distributions perform a requisite role in analyzing data and cooking a dataset to train the algorithms efficiently. If you want to learn more about data science - particularly probability distributions and their uses, check out KnowledgeHut's comprehensive Data science course. 
9709
Types of Probability Distributions Every Data Scie...

Data Science has become one of the most popular in... Read More

Top Data Analytics Certifications

What is data analytics?In the world of IT, every small bit of data count; even information that looks like pure nonsense has its significance. So, how do we retrieve the significance from this data? This is where Data Science and analytics comes into the picture.  Data Analytics is a process where data is inspected, transformed and interpreted to discover some useful bits of information from all the noise and make decisions accordingly. It forms the entire basis of the social media industry and finds a lot of use in IT, finance, hospitality and even social sciences. The scope in data analytics is nearly endless since all facets of life deal with the storage, processing and interpretation of data.Why data analytics? Data Analytics in this Information Age has nearly endless opportunities since literally everything in this era hinges on the importance of proper processing and data analysis. The insights from any data are crucial for any business. The field of data Analytics has grown more than 50 times from the early 2000s to 2021. Companies specialising in banking, healthcare, fraud detection, e-commerce, telecommunication, infrastructure and risk management hire data analysts and professionals every year in huge numbers.Need for certification:Skills are the first and foremost criteria for a job, but these skills need to be validated and recognised by reputed organisations for them to impress a potential employer. In the field of Data Analytics, it is pretty crucial to show your certifications. Hence, an employer knows you have hands-on experience in the field and can handle the workload of a real-world setting beyond just theoretical knowledge. Once you get a base certification, you can work your way up to higher and higher positions and enjoy lucrative pay packages. Top Data Analytics Certifications Certified Analytics Professional (CAP) Microsoft Certified Azure Data Scientist Associate Cloudera Certified Associate (CCA) Data Analyst Associate Certified Analytics Professional (aCAP) SAS Certified Data Analyst (Using SAS91. Certified Analytics Professional (CAP)A certification from an organisation called INFORMS, CAP is a notoriously rigorous certification and stands out like a star on an applicant's resume. Those who complete this program gain an invaluable credential and are able to distinguish themselves from the competition. It gives a candidate a comprehensive understanding of the analytical process's various fine aspects--from framing hypotheses and analytic problems to the proper methodology, along with acquisition, model building and deployment process with long-term life cycle management. It needs to be renewed after three years.The application process is in itself quite complex, and it also involves signing the CAP Code of Ethics before one is given the certification. The CAP panel reviews each application, and those who pass this review are the only ones who can give the exam.  Prerequisite: A bachelor’s degree with 5 years of professional experience or a master's degree with 3 years of professional experience.  Exam Fee & Format: The base price is $695. For individuals who are members of INFORMS the price is $495. (Source) The pass percentage is 70%. The format is a four option MCQ paper. Salary: $76808 per year (Source) 2. Cloudera Certified Associate (CCA) Data Analyst Cloudera has a well-earned reputation in the IT sector, and its Associate Data analyst certification can help bolster the resume of Business intelligence specialists, system architects, data analysts, database administrators as well as developers. It has a specific focus on SQL developers who aim to show their proficiency on the platform.This certificate validates an applicant's ability to operate in a CDH environment by Cloudera using Impala and Hive tools. One doesn't need to turn to expensive tuitions and academies as Cloudera offers an Analyst Training course with almost the same objectives as the exam, leaving one with a good grasp of the fundamentals.   Prerequisites: basic knowledge of SQL and Linux Command line Exam Fee & Format: The cost of the exam is $295 (Source), The test is a performance-based test containing 8-12 questions to be completed in a proctored environment under 129 minutes.  Expected Salary: You can earn the job title of Cloudera Data Analyst that pays up to $113,286 per year. (Source)3. Associate Certified Analytics Professional (aCAP)aCAP is an entry-level certification for Analytics professionals with lesser experience but effective knowledge, which helps in real-life situations. It is for those candidates who have a master’s degree in a field related to data analytics.  It is one of the few vendor-neutral certifications on the list and must be converted to CAP within 6 years, so it offers a good opportunity for those with a long term path in a Data Analytics career. It also needs to be renewed every three years, like the CAP certification. Like its professional counterpart, aCAP helps a candidate step out in a vendor-neutral manner and drastically increases their professional credibility.  Prerequisite: Master’s degree in any discipline related to data Analytics. Exam Fee: The base price is $300. For individuals who are members of INFORMS the price is $200. (Source). There is an extensive syllabus which covers: i. Business Problem Framing, ii. Analytics Problem Framing, iii. Data, iv. Methodology Selection, v. Model Building, vi. Deployment, vii. Lifecycle Management of the Analytics process, problem-solving, data science and visualisation and much more.4. SAS Certified Data Analyst (Using SAS9)From one of the pioneers in IT and Statistics - the SAS Institute of Data Management - a SAS Certified Data Scientist can gain insights and analyse various aspects of data from businesses using tools like the SAS software and other open-source methodology. It also validates competency in using complex machine learning models and inferring results to interpret future business strategy and release models using the SAS environment. SAS Academy for Data Science is a viable institute for those who want to receive proper training for the exam and use this as a basis for their career.  Prerequisites: To earn this credential, one needs to pass 5 exams, two from the SAS Certified Big Data Professional credential and three exams from the SAS Certified Advanced Analytics Professional Credential. Exam Fee: The cost for each exam is $180. (Source) An exception is Predictive Modelling using the SAS Enterprise Miner, costing $250, This exam can be taken in the English language. One can join the SAS Academy for Data Science and also take a practice exam beforehand. Salary: You can get a job as a SAS Data Analyst that pays up to $90,000 per year! (Source) 5. IBM Data Science Professional CertificateWhenever someone studies the history of a computer, IBM (International Business Machines) is the first brand that comes up. IBM is still alive and kicking, now having forayed into and becoming a major player in the Big Data segment. The IBM Data Science Professional certificate is one of the beginner-level certificates if you want to sink your hands into the world of data analysis. It shows a candidate's skills in various topics pertaining to data sciences, including various open-source tools, Python databases, SWL, data visualisation, and data methodologies.  One needs to complete nine courses to earn the certificate. It takes around three months if one works twelve hours per week. It also involves the completion of various hands-on assignments and building a portfolio. A candidate earns the Professional certificate from Coursera and a badge from IBM that recognises a candidate's proficiency in the area. Prerequisites: It is the optimal course for freshers since it requires no requisite programming knowledge or proficiency in Analytics. Exam Fee: It costs $39 per month (Source) to access the course materials and the certificate. The course is handled by the Coursera organisation. Expected Salary: This certification can earn you the title of IBM Data Scientist and help you earn a salary of $134,846 per annum. (Source) 6. Microsoft Certified Azure Data Scientist AssociateIt's one of the most well-known certifications for newcomers to step into the field of Big Data and Data analytics. This credential is offered by the leader in the industry, Microsoft Azure. This credential validates a candidate's ability to work with Microsoft Azure developing environment and proficiency in analysing big data, preparing data for the modelling process, and then progressing to designing models. One advantage of this credential is that it has no expiry date and does not need renewal; it also authorises the candidate’s extensive knowledge in predictive Analytics. Prerequisites: knowledge and experience in data science and using Azure Machine Learning and Azure Databricks. Exam Fee: It costs $165 to (Source) register for the exam. One advantage is that there is no need to attend proxy institutions to prepare for this exam, as Microsoft offers free training materials as well as an instructor-led course that is paid. There is a comprehensive collection of resources available to a candidate. Expected Salary: The job title typically offered is Microsoft Data Scientist and it typically fetches a yearly pay of $130,993.(Source) Why be a Data Analytics professional? For those already working in the field of data, being a Data Analyst is one of the most viable options. The salary of a data analyst ranges from $65,000 to $85,000 depending on number of years of experience. This lucrative salary makes it worth the investment to get a certification and advance your skills to the next level so that you can work for multinational companies by interpreting and organising data and using this analysis to accelerate businesses. These certificates demonstrate that you have the required knowledge needed to operate data models of the volumes needed by big organizations. 1. Demand is more than supply With the advent of the Information Age, there has been a huge boom in companies that either entirely or partially deal with IT. For many companies IT forms the core of their business. Every business has to deal with data, and it is crucial to get accurate insights from this data and use it to further business interests and expand profits. The interpretation of data also aims to guide them in the future to make the best business decisions.  Complex business intelligence algorithms are in place these days. They need trained professionals to operate them; since this field is relatively new, there is a shortage of experts. Thus, there are vacancies for data analyst positions with lucrative pay if one is qualified enough.2. Good pay with benefitsA data analyst is an extremely lucrative profession, with an average base pay of $71,909 (Source), employee benefits, a good work-home balance, and other perks. It has been consistently rated as being among the hottest careers of the decade and allows professionals to have a long and satisfying career.   Companies Hiring Certified Data Analytics Professionals Oracle A California based brand, Oracle is a software company that is most famous for its data solutions. With over 130000 employees and a revenue of 39 billion, it is surely one of the bigger players in Data Analytics.  MicroStrategy   Unlike its name, this company is anything but micro, with more than 400 million worth of revenue. It provides a suite of analytical products along with business mobility solutions. It is a key player in the mobile space, working natively with Android and iOS.   SAS   One of the companies in the list which provides certifications and is also without a doubt one of the largest names in the field of Big Data, machine learning and Data Analytics, is SAS. The name SAS is derived from Statistical Analysis System. This company is trusted and has a solid reputation. It is also behind the SAS Institute for Data Science. Hence, SAS is the organisation you would want to go to if you're aiming for a long-term career in data science.    Conclusion To conclude, big data and data Analytics are a field of endless opportunities. By investing in the right credential, one can pave the way to a viable and lucrative career path. Beware though, there are lots of companies that provide certifications, but only recognised and reputed credentials will give you the opportunities you are seeking. Hiring companies look for these certifications as a mark of authenticity of your hands-on experience and the amount of work you can handle effectively. Therefore, the credential you choose for yourself plays a vital role in the career you can have in the field of Data analytics.  Happy learning!    
5650
Top Data Analytics Certifications

What is data analytics?In the world of IT, every s... Read More

Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology you would have heard of machine learning. In fact machine learning is now a buzzword and there are dozens of articles and research papers dedicated to it.  Machine learning is a technique which makes the machine learn from past experiences. Complex domain problems can be resolved quickly and efficiently using Machine Learning techniques.  We are living in an age where huge amounts of data are produced every second. This explosion of data has led to creation of machine learning models which can be used to analyse data and to benefit businesses.  This article tries to answer a few important concepts related to Machine Learning and informs you about the career path in this prestigious and important domain.What is Machine Learning?So, here’s your introduction to Machine Learning. This term was coined in the year 1997. “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at the tasks improves with the experiences.”, as defined in the book on ML written by Mitchell in 1997. The difference between a traditional programming and programming using Machine Learning is depicted here, the first Approach (a) is a traditional approach, and second approach (b) is a Machine Learning based approach.Machine Learning encompasses the techniques in AI which allow the system to learn automatically looking at the data available. While learning, the system tries to improve the experience without making any explicit efforts in programming. Any machine learning application follows the following steps broadlySelecting the training datasetAs the definition indicates, machine learning algorithms require past experience, that is data, for learning. So, selection of appropriate data is the key for any machine learning application.Preparing the dataset by preprocessing the dataOnce the decision about the data is made, it needs to be prepared for use. Machine learning algorithms are very susceptible to the small changes in data. To get the right insights, data must be preprocessed which includes data cleaning and data transformation.  Exploring the basic statistics and properties of dataTo understand what the data wishes to convey, the data engineer or Machine Learning engineer needs to understand the properties of data in detail. These details are understood by studying the statistical properties of data. Visualization is an important process to understand the data in detail.Selecting the appropriate algorithm to apply on the datasetOnce the data is ready and understood in detail, then appropriate Machine Learning algorithms or models are selected. The choice of algorithm depends on characteristics of data as well as type of task to be performed on the data. The choice also depends on what kind of output is required from the data.Checking the performance and fine-tuning the parameters of the algorithmThe model or algorithm chosen is fine-tuned to get improved performance. If multiple models are applied, then they are weighed against the performance. The final algorithm is again fine-tuned to get appropriate output and performance.Why Pursue a Career in Machine Learning in 2021?A recent survey has estimated that the jobs in AI and ML have grown by more than 300%. Even before the pandemic struck, Machine Learning skills were in high demand and the demand is expected to increase two-fold in the near future.A career in machine learning gives you the opportunity to make significant contributions in AI, the future of technology. All the big and small businesses are adopting Machine Learning models to improve their bottom-line margins and return on investment.  The use of Machine Learning has gone beyond just technology and it is now used in diverse industries including healthcare, automobile, manufacturing, government and more. This has greatly enhanced the value of Machine Learning experts who can earn an average salary of $112,000.  Huge numbers of jobs are expected to be created in the coming years.  Here are a few reasons why one should pursue a career in Machine Learning:The global machine learning market is expected to touch $20.83B in 2024, according to Forbes.  We are living in a digital age and this explosion of data has made the use of machine learning models a necessity. Machine Learning is the only way to extract meaning out of data and businesses need Machine Learning engineers to analyze huge data and gain insights from them to improve their businesses.If you like numbers, if you like research, if you like to read and test and if you have a passion to analyse, then machine learning is the career for you. Learning the right tools and programming languages will help you use machine learning to provide appropriate solutions to complex problems, overcome challenges and grow the business.Machine Learning is a great career option for those interested in computer science and mathematics. They can come up with new Machine Learning algorithms and techniques to cater to the needs of various business domains.As explained above, a career in machine learning is both rewarding and lucrative. There are huge number of opportunities available if you have the right expertise and knowledge. On an average, Machine Learning engineers get higher salaries, than other software developers.Years of experience in the Machine Learning domain, helps you break into data scientist roles, which is not just among the hottest careers of our generation but also a highly respected and lucrative career. Right skills in the right business domain helps you progress and make a mark for yourself in your organization. For example, if you have expertise in pharmaceutical industries and experience working in Machine learning, then you may land job roles as a data scientist consultant in big pharmaceutical companies.Statistics on Machine learning growth and the industries that use MLAccording to a research paper in AI Multiple (https://research.aimultiple.com/ml-stats/), the Machine Learning market will grow to 9 Billion USD by the end of 2022. There are various areas where Machine Learning models and solutions are getting deployed, and businesses see an overall increase of 44% investments in this area. North America is one of the leading regions in the adoption of Machine Learning followed by Asia.The Global Machine Learning market will grow by 42% which is evident from the following graph. Image sourceThere is a huge demand for Machine Learning modelling because of the large use of Cloud Based Applications and Services. The pandemic has changed the face of businesses, making them heavily dependent on Cloud and AI based services. Google, IBM, and Amazon are just some of the companies that have invested heavily in AI and Machine Learning based application development, to provide robust solutions for problems faced by small to large scale businesses. Machine Learning and Cloud based solutions are scalable and secure for all types of business.ML analyses and interprets data patterns, computing and developing algorithms for various business purposes.Advantages of Machine Learning courseNow that we have established the advantages of perusing a career in Machine Learning, let’s understand from where to start our machine learning journey. The best option would be to start with a Machine Learning course. There are various platforms which offer popular Machine Learning courses. One can always start with an online course which is both effective and safe in these COVID times.These courses start with an introduction to Machine Learning and then slowly help you to build your skills in the domain. Many courses even start with the basics of programming languages such as Python, which are important for building Machine Learning models. Courses from reputed institutions will hand hold you through the basics. Once the basics are clear, you may switch to an offline course and get the required certification.Online certifications have the same value as offline classes. They are a great way to clear your doubts and get personalized help to grow your knowledge. These courses can be completed along with your normal job or education, as most are self-paced and can be taken at a time of your convenience. There are plenty of online blogs and articles to aid you in completion of your certification.Machine Learning courses include many real time case studies which help you in understanding the basics and application aspects. Learning and applying are both important and are covered in good Machine Learning Courses. So, do your research and pick an online tutorial that is from a reputable institute.What Does the Career Path in Machine Learning Look Like?One can start their career in Machine Learning domain as a developer or application programmer. But the acquisition of the right skills and experience can lead you to various career paths. Following are some of the career options in Machine Learning (not an exhaustive list):Data ScientistA data scientist is a person with rich experience in a particular business field. A person who has a knowledge of domain, as well as machine learning modelling, is a data scientist. Data Scientists’ job is to study the data carefully and suggest accurate models to improve the business.AI and Machine Learning EngineerAn AI engineer is responsible for choosing the proper Machine Learning Algorithm based on natural language processing and neural network. They are responsible for applying it in AI applications like personalized advertising.  A Machine Learning Engineer is responsible for creating the appropriate models for improvement of the businessData EngineerA Data Engineer, as the name suggests, is responsible to collect data and make it ready for the application of Machine Learning models. Identification of the right data and making it ready for extraction of further insights is the main work of a data engineer.Business AnalystA person who studies the business and analyzes the data to get insights from it is a Business Analyst. He or she is responsible for extracting the insights from the data at hand.Business Intelligence (BI) DeveloperA BI developer uses Machine Learning and Data Analytics techniques to work on a large amount of data. Proper representation of data to suit business decisions, using the latest tools for creation of intuitive dashboards is the role of a BI developer.  Human Machine Interface learning engineerCreating tools using machine learning techniques to ease the human machine interaction or automate decisions, is the role of a Human Machine Interface learning engineer. This person helps in generating choices for users to ease their work.Natural Language Processing (NLP) engineer or developerAs the name suggests, this person develops various techniques to process Natural Language constructs. Building applications or systems using machine learning techniques to build Natural Language based applications is their main task. They create multilingual Chatbots for use in websites and other applications.Why are Machine Learning Roles so popular?As mentioned above, the market growth of AI and ML has increased tremendously over the past years. The Machine Learning Techniques are applied in every domain including marketing, sales, product recommendations, brand retention, creating advertising, understanding the sentiments of customer, security, banking and more. Machine learning algorithms are also used in emails to ease the users work. This says a lot, and proves that a career in Machine Learning is in high demand as all businesses are incorporating various machine learning techniques and are improving their business.One can harness this popularity by skilling up with Machine Learning skills. Machine Learning models are now being used by every company, irrespective of their size--small or big, to get insights on their data and use these insights to improve the business. As every company wishes to grow faster, they are deploying more machine learning engineers to get their work done on time. Also, the migration of businesses to Cloud services for better security and scalability, has increased their requirement for more Machine Learning algorithms and models to cater to their needs.Introducing the Machine learning techniques and solutions has brought huge returns for businesses.  Machine Learning solution providers like Google, IBM, Microsoft etc. are investing in human resources for development of Machine Learning models and algorithms. The tools developed by them are popularly used by businesses to get early returns. It has been observed that there is significant increase in patents in Machine Learning domains since the past few years, indicating the quantum of work happening in this domain.Machine Learning SkillsLet’s visit a few important skills one must acquire to work in the domain of Machine Learning.Programming languagesKnowledge of programming is very important for a career in Machine Learning. Languages like Python and R are popularly used to develop applications using Machine Learning models and algorithms. Python, being the simplest and most flexible language, is very popular for AI and Machine Learning applications. These languages provide rich support of libraries for implementation of Machine Learning Algorithms. A person who is good in programming can work very efficiently in this domain.Mathematics and StatisticsThe base for Machine Learning is mathematics and statistics. Statistics applied to data help in understanding it in micro detail. Many machine learning models are based on the probability theory and require knowledge of linear algebra, transformations etc. A good understanding of statistics and probability increases the early adoption to Machine Learning domain.Analytical toolsA plethora of analytical tools are available where machine learning models are already implemented and made available for use. Also, these tools are very good for visualization purposes. Tools like IBM Cognos, PowerBI, Tableue etc are important to pursue a career as a  Machine Learning engineer.Machine Learning Algorithms and librariesTo become a master in this domain, one must master the libraries which are provided with various programming languages. The basic understanding of how machine learning algorithms work and are implemented is crucial.Data Modelling for Machine Learning based systemsData lies at the core of any Machine Learning application. So, modelling the data to suit the application of Machine Learning algorithms is an important task. Data modelling experts are the heart of development teams that develop machine learning based systems. SQL based solutions like Oracle, SQL Server, and NoSQL solutions are important for modelling data required for Machine Learning applications. MongoDB, DynamoDB, Riak are some important NOSQL based solutions available to process unstructured data for Machine Learning applications.Other than these skills, there are two other skills that may prove to be beneficial for those planning on a career in the Machine Learning domain:Natural Language processing techniquesFor E-commerce sites, customer feedback is very important and crucial in determining the roadmap of future products. Many customers give reviews for the products that they have used or give suggestions for improvement. These feedbacks and opinions are analyzed to gain more insights about the customers buying habits as well as about the products. This is part of natural language processing using Machine Learning. The likes of Google, Facebook, Twitter are developing machine learning algorithms for Natural Language Processing and are constantly working on improving their solutions. Knowledge of basics of Natural Language Processing techniques and libraries is must in the domain of Machine Learning.Image ProcessingKnowledge of Image and Video processing is very crucial when a solution is required to be developed in the area of security, weather forecasting, crop prediction etc. Machine Learning based solutions are very effective in these domains. Tools like Matlab, Octave, OpenCV are some important tools available to develop Machine Learning based solutions which require image or video processing.ConclusionMachine Learning is a technique to automate the tasks based on past experiences. This is among the most lucrative career choices right now and will continue to remain so in the future. Job opportunities are increasing day by day in this domain. Acquiring the right skills by opting for a proper Machine Learning course is important to grow in this domain. You can have an impressive career trajectory as a machine learning expert, provided you have the right skills and expertise.
5691
Why Should You Start a Career in Machine Learning?

If you are even remotely interested in technology ... Read More