Search

Series List Filter

What are List Methods in Python

Sequence is one of the most basic data types in Python. Every element of a sequence is allocated a unique number called its position or index. The first designated index is zero, the second index is one, and so forth. Although Python comes with six types of pre-installed sequences, the most used ones are lists and tuples, and in this article we would be discussing about lists and its methods.Certain tasks can be performed with all types of sequence; these include adding, multiplying, indexing, slicing, and so on. For added convenience, Python provides built-in functions to find the length of a sequence and to find the largest and smallest elements of the sequence. If you are interested to learn more about other functions and features of Python, you may go through our Python tutorial.What is a ListList is the most versatile data-type available in Python that can be written as a collection of comma-separated values or items between square brackets. The items in a list need not necessarily be homogeneous, i.e. of the same type. This property of List makes it one of the most powerful tools in Python eg:[‘HELLO’, 57, “SKY”]. A single list can contain different Data-Types such as integers, strings, as well as Objects. Lists are mutable, and hence can be changed even after their creation.In Python, lists are ordered in a definite manner and have a definite count. Elements of a list are indexed according to a particular sequence and the indexing is done with 0 being the starting index. Even element of a list has its unique place in the list, which allows duplication of the elements in the list, with each element having its own distinct place and credibility. Lists are a useful tool for storing a sequence of data.Creating a list is as simple as putting different types of comma-separated values between square brackets:list1 = ['jack', 'jill', 1998, 2019];[Text Wrapping Break] list2 = [1, 2, 3, 4, 5 ];[Text Wrapping Break] list3 = ["w", "x", "y", "z"]Just like string indices, list indices start with 0, and lists can be sliced, concatenated and so on.Creating a ListPython Lists can be created just by placing the integer, string, or character inside the square brackets[]. Unlike Sets, a list does not require a built-in function for its creation.# Python program to demonstrate the creation of a list [Text Wrapping Break] # Creating a List [Text Wrapping Break] List = [] [Text Wrapping Break] print("Initial blank List: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] # Creating a List with  [Text Wrapping Break] # the use of a String [Text Wrapping Break] List = ['PythonListDemo'] [Text Wrapping Break] print("\nList with the use of String: ") [Text Wrapping Break] print(List) [Text Wrapping Break][Text Wrapping Break] # Creating a List with [Text Wrapping Break] # the use of multiple values  [Text Wrapping Break] List = ["Python", "List", "Demo"] [Text Wrapping Break] print("\nList containing multiple values: ") [Text Wrapping Break] print(List[0]) [Text Wrapping Break] print(List[2]) [Text Wrapping Break] [Text Wrapping Break] # Creating a Multi-Dimensional List [Text Wrapping Break] # (By Nesting a list inside a List) [Text Wrapping Break] List = [['Python', 'List'] , ['Demo']] [Text Wrapping Break] print("\nMulti-Dimensional List: ") [Text Wrapping Break] print(List)Initial blank List: [Text Wrapping Break] [] [Text Wrapping Break] [Text Wrapping Break] List with the use of String: [Text Wrapping Break] ['PythonListDemo'] [Text Wrapping Break] [Text Wrapping Break] List containing multiple values: [Text Wrapping Break] Python [Text Wrapping Break] Demo[Text Wrapping Break] [Text Wrapping Break] Multi-Dimensional List:  [Text Wrapping Break] [['Python', 'List'], ['Demo']]Creating a list with multiple distinct or duplicate elements:Multiple distinct or duplicate values can be stored as a sequence during creation of list:# Creating a List with [Text Wrapping Break] # the use of  Numbers [Text Wrapping Break] # (Having duplicate values) [Text Wrapping Break] List = [1, 2, 4, 4, 3, 3, 3, 6, 5] [Text Wrapping Break] print("\nList with the use of Numbers: ")  [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Creating a List with [Text Wrapping Break] # mixed type of values [Text Wrapping Break] #  (Having numbers and strings) [Text Wrapping Break] List = [1, 2, 'Python', 4, 'List', 6, 'Demo'] [Text Wrapping Break] print("\nList with the use of Mixed Values: ") [Text Wrapping Break] print(List)List with the use of Numbers: [Text Wrapping Break][1, 2, 4, 4, 3, 3, 3, 6,  5] [Text Wrapping Break] [Text Wrapping Break] List with the use of Mixed Values: [Text Wrapping Break] [1, 2, 'Python', 4, 'List', 6, 'Demo'] [Text Wrapping Break]Adding Elements to a ListUsing append() methodUsing the built-in append() function elements can be added to the List. At a time only one element can be added to the list by the use of append() method, but for the addition of multiple elements with the method, loops are used. Unlike Sets, a new List can be added to an existing one with the use of the append() method.# Python program to demonstrate addition of elements in a List [Text Wrapping Break] [Text Wrapping Break] # Creating a List [Text Wrapping Break] List = [] [Text Wrapping Break] print("Initial blank List: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] #  Addition of Elements  [Text Wrapping Break] # in the List [Text Wrapping Break] List.append(1) [Text Wrapping Break] List.append (2) [Text Wrapping Break] List.append(4) [Text Wrapping Break] print("\nList after Addition of Three elements: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break]# Adding elements to the List [Text Wrapping Break] # using Iterator [Text Wrapping Break] for i in range(1, 4): [Text Wrapping Break] List.append(i) [Text Wrapping Break] print("\nList after Addition of elements from 1-3: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] # Addition of List to a List [Text Wrapping Break] List2 = ['Python', 'List'] [Text Wrapping Break] List.append(List2) [Text Wrapping Break] print ("\nList after Addition of a List: ") [Text Wrapping Break] print(List)Initial blank List: [Text Wrapping Break] [] [Text Wrapping Break]  [Text Wrapping Break] List after Addition of Three elements: [Text Wrapping Break] [1,2,4][Text Wrapping Break][Text Wrapping Break]List after Addition of elements from 1-3: [Text Wrapping Break] [1, 2, 4, 1, 2, 3] [Text Wrapping Break]  [Text Wrapping Break] List after Addition of a List:[Text Wrapping Break] [1, 2,  4, 1, 2, 3, ['Python', 'List']]Using insert() methodAppend() method restricts the addition of elements at the end of the List only. Using the insert() method, elements can be added to the list at your desired position. Unlike append() which requires only one argument, insert() method requires two arguments for defining the position and value of the element to be inserted (position, value).# Python program to demonstrate addition of elements in a List [Text Wrapping Break] [Text Wrapping Break] # Creating a List  [Text Wrapping Break] List = [1,2,3,4] [Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] # Addition of Element at  [Text Wrapping Break] # specific Position [Text Wrapping Break] # (using Insert Method) [Text Wrapping Break] List.insert(3, 12) [Text Wrapping Break] List.insert(0, 'Python') [Text Wrapping Break] print("\nList after performing Insert Operation: ") [Text Wrapping Break] print(List)Initial List: [Text Wrapping Break] [1, 2, 3, 4] [Text Wrapping Break] [Text Wrapping Break] List after performing Insert Operation: [Text Wrapping Break] [ 'Python', 1, 2, 3, 12, 4]Using extend() methodApart from append() and insert() methods, there’s another method to add elements by the use of extend() method. This method is used for adding multiple elements to the end of the list at once.# Python program to demonstrate  [Text Wrapping Break] # Addition of elements in a List [Text Wrapping Break] [Text Wrapping Break] # Creating a List  [Text Wrapping Break] List = [1,2,3,4] [Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] #  Addition of multiple elements [Text Wrapping Break] # to the List at the end [Text Wrapping Break] # (using Extend Method)  [Text Wrapping Break] List.extend ( [8,  'Python', 'Program']) [Text Wrapping Break] print( "\nList after performing  Extend Operation: " ) [Text Wrapping Break] print(List)Initial List: [Text Wrapping Break] [1, 2, 3, 4] [Text Wrapping Break]  [Text Wrapping Break] List after performing Extend Operation:  [Text Wrapping Break] [1, 2, 3, 4, 8, 'Python', 'Program']Accessing elements from the ListIn order to access the items in a List, the index number is used as reference. The index operator [ ] is used to access the items of a list. The index should be an integer and nested lists are accessed by using nested indexing.# Python program to demonstrate  [Text Wrapping Break] # accessing of element from list [Text Wrapping Break][Text Wrapping Break] # Creating a List with [Text Wrapping Break]# the use of multiple values [Text Wrapping Break] List = ["Access", "List", "Elements"] [Text Wrapping Break]  [Text Wrapping Break]# accessing an element from the  [Text Wrapping Break] # list using index number [Text Wrapping Break] print("Accessing an element from the list") [Text Wrapping Break] print(List[0])  [Text Wrapping Break] print(List[2]) [Text Wrapping Break]  [Text Wrapping Break] # Creating a Multi-Dimensional List [Text Wrapping Break] # (By Nesting a list inside a List) [Text Wrapping Break] List = [['Access', 'List'] , ['Elements']] [Text Wrapping Break]  [Text Wrapping Break] # accessing an element from the [Text Wrapping Break] # Multi-Dimensional List using [Text Wrapping Break] # index number [Text Wrapping Break] print("Accessing an element from a Multi -  Dimensional list") [Text Wrapping Break] print(List[0][1]) [Text Wrapping Break] print(List[1][0])Accessing an element from the list [Text Wrapping Break] Access [Text Wrapping Break] Elements [Text Wrapping Break] [Text Wrapping Break] Accessing an element from a Multi-Dimensional  list [Text Wrapping Break] List [Text Wrapping Break] ElementsNegative indexingIn Python, negative sequence indexing means the representation of positions of the array from the end. Rather than calculating the offset like List[len(List)-3], we can just write it like List[-3]. Here, -1 refers to the last item, -2 refers to the second last item etc. i.e. beginning from the end.List = [1, 2, 'Python', 4, 'Negative', 6, 'Index'] [Text Wrapping Break] [Text Wrapping Break] # Accessing an element using negative indexing [Text Wrapping Break] print("Accessing element using negative indexing") [Text Wrapping Break]  [Text Wrapping Break] # print the last element of list [Text Wrapping Break] print(List[-1]) [Text Wrapping Break] [Text Wrapping Break]# print the third last element of list  [Text Wrapping Break] print(List[-3])Accessing element using negative indexing [Text Wrapping Break] Index [Text Wrapping Break] NegativeRemoving Elements from the ListUsing remove() methodIn Python, using the built-in remove() function, elements can be removed from the List but an Error will arise if the element is not present in the set. Remove() method is only capable of removing one element at a time, to remove a range of elements, an iterator is used. A limitation of this method is that it will only remove the first occurrence of the searched element and would not work if there are multiple occurrences of the searched element.# Python program to demonstrate removal of elements in a List [Text Wrapping Break][Text Wrapping Break] # Creating a List [Text Wrapping Break] List = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] [Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Removing elements from List [Text Wrapping Break] # using Remove() method [Text Wrapping Break] List.remove(5) [Text Wrapping Break] List.remove(6) [Text Wrapping Break] print("\nList after removal of two elements: ") [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Removing elements from List [Text Wrapping Break] # using iterator method [Text Wrapping Break] for i in range(1, 5): [Text Wrapping Break]    List.remove(i) [Text Wrapping Break] print("\nList after removing a range of elements: ") [Text Wrapping Break] print(List)Initial List: [Text Wrapping Break][1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] [Text Wrapping Break][Text Wrapping Break]List after removal of two elements: [Text Wrapping Break][1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12][Text Wrapping Break] [Text Wrapping Break] List after removing a range of elements: [Text Wrapping Break] [7, 8, 9, 10, 11, 12]Using pop() methodIn Python,  we can also remove and return an element from the set using the Pop() function, but it removes  the last element of the set only by default. To remove a specific element from a position of the List, index of the element is passed as an argument to the pop() function.List = [1,2,3,4,5] [Text Wrapping Break] [Text Wrapping Break] # Removing element from the  [Text Wrapping Break] # Set using the pop() method [Text Wrapping Break] List.pop() [Text Wrapping Break] print("\nList after popping an element: ") [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Removing element at a  [Text Wrapping Break] # specific location from the  [Text Wrapping Break] # Set using the pop() method [Text Wrapping Break] List.pop(2) [Text Wrapping Break] print("\nList after popping a specific element: ") [Text Wrapping Break] print(List)List after popping an element: [Text Wrapping Break] [1, 2, 3, 4]  [Text Wrapping Break][Text Wrapping Break]List after popping a specific  element: [Text Wrapping Break][1, 2, 4]Slicing of a ListAlthough there are several ways to print the whole List with all the elements in Python, there is only one way to print a specific range of elements from the list: by the use of Slice operation. Slice operation is performed on Lists by the use of colon(:). For printing elements from the beginning of the range use [:Index], for printing elements from end use [:-Index], to print elements from a specific index till the end use [Index:], for printing elements within a specific range, use [Start Index: End Index] and to print the entire List by the use of slicing operation, use [:]. Moreover, in order to print entire List in reverse order, use [::-1]. For printing the elements of List from rear end, negative indexes are used.# Python program to demonstrate removal of elements in a List [Text Wrapping Break][Text Wrapping Break]# Creating a List [Text Wrapping Break] List = ['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'] [Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Print elements of a range [Text Wrapping Break] # using Slice operation [Text Wrapping Break] Sliced_List = List[3:10] [Text Wrapping Break] print("\nSlicing elements in a range 3-10: ") [Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] # Print elements from a  [Text Wrapping Break] # pre-defined point to end [Text Wrapping Break] Sliced_List = List[6:] [Text Wrapping Break] print("\nElements sliced from 6th ""element till the end: ") [Text Wrapping Break] print(Sliced_List) [Text Wrapping Break] [Text Wrapping Break]# Printing elements from [Text Wrapping Break] # beginning till end [Text Wrapping Break] Sliced_List = List[:] [Text Wrapping Break] print("\nPrinting all elements using slice operation: ") [Text Wrapping Break] print(Sliced_List) Initial List: [Text Wrapping Break] ['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'] [Text Wrapping Break] [Text Wrapping Break] Slicing elements in a range 3-10: [Text Wrapping Break]['H', 'O', 'N', 'P', 'R','O','G'][Text Wrapping Break][Text Wrapping Break]Elements sliced from 6th element till the end: [Text Wrapping Break]['P', 'R', 'O', 'G', 'R', 'A', 'M'][Text Wrapping Break][Text Wrapping Break]Printing all elements using slice operation: [Text Wrapping Break] ['P', 'Y', 'T', 'H', 'O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M']Negative index List Slicing# Creating a List [Text Wrapping Break] List = ['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'] [Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List) [Text Wrapping Break]  [Text Wrapping Break] # Print elements from beginning [Text Wrapping Break] # to a pre-defined point using Slice [Text Wrapping Break] Sliced_List = List[:-7] [Text Wrapping Break] print("\nElements sliced till 7th element from last: ") [Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] #  Print elements of a range [Text Wrapping Break] # using negative index List slicing [Text Wrapping Break] Sliced_List = List[-6:-1] [Text Wrapping Break] print("\nElements sliced from index -6 to -1") [Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] #  Printing elements in reverse [Text Wrapping Break] # using Slice operation [Text Wrapping Break] Sliced_List = List[::-1] [Text Wrapping Break] print("\nPrinting List in reverse: ") [Text Wrapping Break] print(Sliced_List)Initial List: [Text Wrapping Break] ['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'][Text Wrapping Break] [Text Wrapping Break]Elements sliced till 7th element from last: [Text Wrapping Break]['P', 'Y', 'T', 'H', 'O', 'N'][Text Wrapping Break] [Text Wrapping Break]Elements sliced from index -6 to -1[Text Wrapping Break] ['R', 'O', 'G', 'R', 'A'][Text Wrapping Break] [Text Wrapping Break]Printing List in reverse:[Text Wrapping Break]['M', 'A', 'R', 'G', 'O', 'R', 'P', 'N', 'O', 'H', 'T', 'Y', 'P']Updating ListsYou can update single or multiple elements of lists by reassigning the values on the lists individually.# Python program to update elements of a list[Text Wrapping Break]list = ['physics', 'chemistry', 1998, 2019];[Text Wrapping Break] print "Value available at index 2 : "[Text Wrapping Break] print list[2] [Text Wrapping Break] list[2] = 2000;[Text Wrapping Break] print "New value available at index 2 : "[Text Wrapping Break] print list[2]Value available at index 2 : [Text Wrapping Break] 1998 [Text Wrapping Break] New value available at index 2 : [Text Wrapping Break] 2000Built-in functionsFUNCTION DESCRIPTIONsum() Addsall numbers.ord() Used for returning an integer which represents the unique Unicode code point of the given Unicode character.cmp() If the first list is “greater” than the second list, the function returns 1.max() It returns the largest element in the list.min() It returns the smallest element in the list.all() It returns true if all elements are true or false if any element in the list is empty.any() It returns true if even one of the elements of the list is true. If one list is empty, it returns false.len() It returns length the list.enumerate() It adds a counter to an enumerate object that can be used directly for loops.accumulate() It makes an iterator that gives the result of a function. It takes a function as an argument.filter() It can individually check if every element is true or not.map() It applies a particular function to each item of an iterable and shows a list of the results.lambda() It is an anonymous function that behaves like a normal function in regard to arguments. While normal functions are defined with def keyword, anonymous functions are defined using lambda keyword.List MethodsFUNCTION DESCRIPTIONAppend() Adds an element at the end of the listExtend() Adds all elements of one list to another listInsert() Inserts an item at a desired indexRemove() Removes an item from the listPop() Removes and returns an element at a desired indexClear() Removes all elements from the listIndex() Returns the index of the first identical itemCount() Returns the number of items passed as argumentSort() Sort items of a list in ascending orderReverse() Reverses the listcopy() Returns a copy of the listSummaryIn this article, we have covered the concept of Lists in Python. You have learned the basics of creating a List, adding value to it, accessing its elements, removing the elements, and various other operations. We have also covered some basic built-in functions of Python and several other methods along with their functions. To gain more knowledge about Python tips and tricks, check our Python tutorial and get a good hold over coding in Python by joining the Python certification course.
Rated 4.5/5 based on 12 customer reviews

What are List Methods in Python

4868
What are List Methods in Python

Sequence is one of the most basic data types in Python. Every element of a sequence is allocated a unique number called its position or index. The first designated index is zero, the second index is one, and so forth. Although Python comes with six types of pre-installed sequences, the most used ones are lists and tuples, and in this article we would be discussing about lists and its methods.

Certain tasks can be performed with all types of sequence; these include adding, multiplying, indexing, slicing, and so on. For added convenience, Python provides built-in functions to find the length of a sequence and to find the largest and smallest elements of the sequence. If you are interested to learn more about other functions and features of Python, you may go through our Python tutorial.

What is a List

List is the most versatile data-type available in Python that can be written as a collection of comma-separated values or items between square brackets. The items in a list need not necessarily be homogeneous, i.e. of the same type. This property of List makes it one of the most powerful tools in Python eg:[‘HELLO’, 57, “SKY”]. A single list can contain different Data-Types such as integers, strings, as well as Objects. Lists are mutable, and hence can be changed even after their creation.

In Python, lists are ordered in a definite manner and have a definite count. Elements of a list are indexed according to a particular sequence and the indexing is done with 0 being the starting index. Even element of a list has its unique place in the list, which allows duplication of the elements in the list, with each element having its own distinct place and credibility. Lists are a useful tool for storing a sequence of data.

Creating a list is as simple as putting different types of comma-separated values between square brackets:

list1 = ['jack', 'jill', 1998, 2019];[Text Wrapping Break] list2 = [1, 2,
 3, 4, 5 ];[Text Wrapping Break] list3 = ["w", "x", "y", "z"]

Just like string indices, list indices start with 0, and lists can be sliced, concatenated and so on.

Creating a List

Python Lists can be created just by placing the integer, string, or character inside the square brackets[]. Unlike Sets, a list does not require a built-in function for its creation.

# Python program to demonstrate the creation of a list
[Text Wrapping Break] # Creating a List [Text Wrapping Break] List = []
[Text Wrapping Break] print("Initial blank List: ")
[Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] #
Creating a List with  [Text Wrapping Break] # the use of a String
[Text Wrapping Break] List = ['PythonListDemo']
[Text Wrapping Break] print("\nList with the use of String: ")
[Text Wrapping Break] print(List) [Text Wrapping Break][Text Wrapping Break] # 
Creating a List with [Text Wrapping Break] # the use of multiple values 
[Text Wrapping Break] List = ["Python""List""Demo"]
[Text Wrapping Break] print("\nList containing multiple values: ")
[Text Wrapping Break] print(List[0]) [Text Wrapping Break] print(List[2])
[Text Wrapping Break] [Text Wrapping Break] # Creating a Multi-Dimensional List
[Text Wrapping Break] # (By Nesting a list inside a List) [Text Wrapping Break] List = [['Python', 'List'] , ['Demo']]
[Text Wrapping Break] print("\nMulti-Dimensional List: ")
[Text Wrapping Break] print(List)
Initial blank List:
[Text Wrapping Break]
[] [Text Wrapping Break] [Text Wrapping Break]
List with the use of String:
[Text Wrapping Break]
['PythonListDemo'] [Text Wrapping Break]
[Text Wrapping Break] List 
containing multiple values:
[Text Wrapping Break] Python [Text Wrapping Break]
Demo[Text Wrapping Break] [Text Wrapping Break]
Multi-Dimensional List: 
[Text Wrapping Break] [['Python',
'List'], ['Demo']]

Creating a list with multiple distinct or duplicate elements:

Multiple distinct or duplicate values can be stored as a sequence during creation of list:

# Creating a List with [Text Wrapping Break] # the use of 
Numbers [Text Wrapping Break] # (Having duplicate values)
[Text Wrapping Break] List = [1, 2, 4, 4, 3, 3, 3, 6, 5]
[Text Wrapping Break] print("\nList with the use of Numbers: "[Text Wrapping Break] print(List) [Text Wrapping Break] 
[Text Wrapping Break] # Creating a List with
[Text Wrapping Break] # mixed type of values [Text Wrapping Break] # 
(Having numbers and strings) [Text Wrapping Break] List = [1,
2, 'Python', 4, 'List', 6, 'Demo']
[Text Wrapping Break] print("\nList with the use of Mixed
Values: ") [Text Wrapping Break] print(List)
List with the use of Numbers: [Text Wrapping Break][1, 2, 4, 4, 3, 3, 3, 6, 
5] [Text Wrapping Break] [Text Wrapping Break] List with the use of Mixed Values:
[Text Wrapping Break] [1, 2, 'Python', 4, 'List', 6, 'Demo'] [Text Wrapping Break]

Adding Elements to a List

Using append() method

Using the built-in append() function elements can be added to the List. At a time only one element can be added to the list by the use of append() method, but for the addition of multiple elements with the method, loops are used. Unlike Sets, a new List can be added to an existing one with the use of the append() method.

# Python program to demonstrate addition of elements in a List
[Text Wrapping Break] [Text Wrapping Break] # Creating a List
[Text Wrapping Break] List = [] [Text Wrapping Break] print("Initial blank List: ")
[Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] # 
Addition of Elements  [Text Wrapping Break] # in the List
[Text Wrapping Break] List.append(1) [Text Wrapping Break] List.append (2)
[Text Wrapping Break] List.append(4) [Text Wrapping Break] print("\nList after
Addition of Three elements: ") [Text Wrapping Break] print(List)
[Text Wrapping Break] [Text Wrapping Break]# Adding elements to the List
[Text Wrapping Break] # using Iterator [Text Wrapping Break] for i in range(1, 4):
[Text Wrapping Break] List.append(i) [Text Wrapping Break] print("\nList after
Addition of elements from 1-3: ") [Text Wrapping Break] print(List)
[Text Wrapping Break] [Text Wrapping Break] # Addition of List to a List
[Text Wrapping Break] List2 = ['Python', 'List']
[Text Wrapping Break] List.append(List2) [Text Wrapping Break] print ("\nList after
Addition of a List: ") [Text Wrapping Break] print(List)
Initial blank List: [Text Wrapping Break] [] [Text Wrapping Break] 
[Text Wrapping Break] List after Addition of Three elements: [Text Wrapping Break]
[1,2,4][Text Wrapping Break][Text Wrapping Break]List after Addition of
elements from 1-3[Text Wrapping Break] [1, 2, 4, 1, 2, 3[Text Wrapping Break] 
[Text Wrapping Break] List after Addition of a List:[Text Wrapping Break] [1, 2, 
4, 1, 2, 3, ['Python', 'List']]

Using insert() method

Append() method restricts the addition of elements at the end of the List only. Using the insert() method, elements can be added to the list at your desired position. Unlike append() which requires only one argument, insert() method requires two arguments for defining the position and value of the element to be inserted (position, value).

# Python program to demonstrate addition of elements in a List
[Text Wrapping Break] [Text Wrapping Break] # Creating a List 
[Text Wrapping Break] List = [1,2,3,4] [Text Wrapping Break] print("Initial List: 
") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] #
Addition of Element at  [Text Wrapping Break] # specific Position
[Text Wrapping Break] # (using Insert Method) [Text Wrapping Break] List.insert(3,
12) [Text Wrapping Break] List.insert(0, 'Python')
[Text Wrapping Break] print("\nList after performing Insert Operation: ")
[Text Wrapping Break] print(List)
Initial List: [Text Wrapping Break] [1, 2, 3, 4] [Text Wrapping Break]
[Text Wrapping Break] List after performing Insert Operation:
[Text Wrapping Break] [ 'Python', 1, 2, 3, 12, 4]

Using extend() method

Apart from append() and insert() methods, there’s another method to add elements by the use of extend() method. This method is used for adding multiple elements to the end of the list at once.

# Python program to demonstrate  [Text Wrapping Break] # Addition of elements
in a List [Text Wrapping Break] [Text Wrapping Break] # Creating a List 
[Text Wrapping Break] List = [1,2,3,4] [Text Wrapping Break] print("Initial List:
") [Text Wrapping Break] print(List) [Text Wrapping Break] [Text Wrapping Break] # 
Addition of multiple elements [Text Wrapping Break] # to the List at the end
[Text Wrapping Break] # (using Extend Method) 
[Text Wrapping Break] List.extend ( [8,
 'Python', 'Program']) [Text Wrapping Break] print( "\nList after performing 
Extend Operation: " ) [Text Wrapping Break] print(List)
Initial List: [Text Wrapping Break] [1, 2, 3, 4] [Text Wrapping Break] 
[Text Wrapping Break] List after performing Extend Operation: 
[Text Wrapping Break] [1, 2, 3, 4, 8, 'Python', 'Program']

Accessing elements from the List

In order to access the items in a List, the index number is used as reference. The index operator [ ] is used to access the items of a list. The index should be an integer and nested lists are accessed by using nested indexing.

# Python program to demonstrate  [Text Wrapping Break] # accessing of element
from list [Text Wrapping Break][Text Wrapping Break] # Creating a List with
[Text Wrapping Break]# the use of multiple values [Text Wrapping Break] List =
["Access", "List", "Elements"] [Text Wrapping Break]  [Text Wrapping Break]#
accessing an element from the  [Text Wrapping Break] # list using index number
[Text Wrapping Break] print("Accessing an element from the list")
[Text Wrapping Break] print(List[0])  [Text Wrapping Break] print(List[2])
[Text Wrapping Break]  [Text Wrapping Break] # Creating a Multi-Dimensional List
[Text Wrapping Break] # (By Nesting a list inside a List)
[Text Wrapping Break] List = [['Access', 'List'] , ['Elements']]
[Text Wrapping Break]  [Text Wrapping Break] # accessing an element from the
[Text Wrapping Break] # Multi-Dimensional List using [Text Wrapping Break] # index
number [Text Wrapping Break] print("Accessing an element from a Multi - 
Dimensional list") [Text Wrapping Break] print(List[0][1])
[Text Wrapping Break] print(List[1][0])
Accessing an element from the
list [Text Wrapping Break] Access [Text Wrapping Break] Elements [Text Wrapping Break] [Text Wrapping Break]
Accessing an element from a Multi-Dimensional
 list [Text Wrapping Break] List [Text Wrapping Break] Elements

Negative indexing

In Python, negative sequence indexing means the representation of positions of the array from the end. Rather than calculating the offset like List[len(List)-3], we can just write it like List[-3]. Here, -1 refers to the last item, -2 refers to the second last item etc. i.e. beginning from the end.

List = [1, 2, 'Python', 4, 'Negative', 6, 'Index'] [Text Wrapping Break]
[Text Wrapping Break] # Accessing an element using negative indexing
[Text Wrapping Break] print("Accessing element using negative indexing")
[Text Wrapping Break]  [Text Wrapping Break] # print the last element of list
[Text Wrapping Break] print(List[-1]) [Text Wrapping Break] [Text Wrapping Break]#
print the third last element of list  [Text Wrapping Break] print(List[-3])
Accessing element using negative
indexing [Text Wrapping Break] Index [Text Wrapping Break] Negative

Removing Elements from the List

Using remove() method

In Python, using the built-in remove() function, elements can be removed from the List but an Error will arise if the element is not present in the set. Remove() method is only capable of removing one element at a time, to remove a range of elements, an iterator is used. A limitation of this method is that it will only remove the first occurrence of the searched element and would not work if there are multiple occurrences of the searched element.

# Python program to demonstrate removal of elements in a List
[Text Wrapping Break][Text Wrapping Break] # Creating a List
[Text Wrapping Break] List = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
[Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List)
[Text Wrapping Break]  [Text Wrapping Break] # Removing elements from List
[Text Wrapping Break] # using Remove() method [Text Wrapping Break] List.remove(5)
[Text Wrapping Break] List.remove(6) [Text Wrapping Break] print("\nList after
removal of two elements: ") [Text Wrapping Break] print(List)
[Text Wrapping Break]  [Text Wrapping Break] # Removing elements from List
[Text Wrapping Break] # using iterator method [Text Wrapping Break] for i in
range(1, 5): [Text Wrapping Break]    List.remove(i)
[Text Wrapping Break] print("\nList after removing a range of elements: ")
[Text Wrapping Break] print(List)
Initial List: [Text Wrapping Break][1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
[Text Wrapping Break][Text Wrapping Break]List after removal of two elements:
[Text Wrapping Break][1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12][Text Wrapping Break]
[Text Wrapping Break] List after removing a range of elements:
[Text Wrapping Break] [7, 8, 9, 10, 11, 12]

Using pop() method

In Python,  we can also remove and return an element from the set using the Pop() function, but it removes  the last element of the set only by default. To remove a specific element from a position of the List, index of the element is passed as an argument to the pop() function.

List = [1,2,3,4,5] [Text Wrapping Break] [Text Wrapping Break] # Removing element
from the  [Text Wrapping Break] # Set using the pop() method
[Text Wrapping Break] List.pop() [Text Wrapping Break] print("\nList after popping
an element: ") [Text Wrapping Break] print(List) [Text Wrapping Break] 
[Text Wrapping Break] # Removing element at a  [Text Wrapping Break] # specific
location from the  [Text Wrapping Break] # Set using the pop() method
[Text Wrapping Break] List.pop(2) [Text Wrapping Break] print("\nList after popping
a specific element: ") [Text Wrapping Break] print(List)
List after popping an element: [Text Wrapping Break] [1, 2, 3, 4[Text Wrapping Break][Text Wrapping Break]List after popping a specific 
element: [Text Wrapping Break][1, 2, 4]

Slicing of a List

Although there are several ways to print the whole List with all the elements in Python, there is only one way to print a specific range of elements from the list: by the use of Slice operation. Slice operation is performed on Lists by the use of colon(:). For printing elements from the beginning of the range use [:Index], for printing elements from end use [:-Index], to print elements from a specific index till the end use [Index:], for printing elements within a specific range, use [Start Index: End Index] and to print the entire List by the use of slicing operation, use [:]. Moreover, in order to print entire List in reverse order, use [::-1]. For printing the elements of List from rear end, negative indexes are used.

# Python program to demonstrate removal of elements in a List
[Text Wrapping Break][Text Wrapping Break]# Creating a List
[Text Wrapping Break] List =
['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M']
[Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List)
[Text Wrapping Break]  [Text Wrapping Break] # Print elements of a range
[Text Wrapping Break] # using Slice operation [Text Wrapping Break] Sliced_List =
List[3:10] [Text Wrapping Break] print("\nSlicing elements in a range 3-10: ")
[Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] #
Print elements from a  [Text Wrapping Break] # pre-defined point to end
[Text Wrapping Break] Sliced_List = List[6:]
[Text Wrapping Break] print("\nElements sliced from 6th ""element till the
end: ") [Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]
[Text Wrapping Break]# Printing elements from [Text Wrapping Break] # beginning
till end [Text Wrapping Break] Sliced_List = List[:]
[Text Wrapping Break] print("\nPrinting all elements using slice operation: ")
[Text Wrapping Break] print(Sliced_List) 
Initial List: [Text Wrapping Break]
['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'[Text Wrapping Break]
[Text Wrapping Break] Slicing elements in a range 3-10: [Text Wrapping Break]['H',
'O', 'N', 'P', 'R','O','G'][Text Wrapping Break][Text Wrapping Break]Elements
sliced from 6th element till the end: [Text Wrapping Break]['P', 'R', 'O',
'G', 'R', 'A', 'M'][Text Wrapping Break][Text Wrapping Break]Printing all
elements using slice operation: [Text Wrapping Break] ['P', 'Y', 'T', 'H',
'O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M']

Negative index List Slicing

# Creating a List [Text Wrapping Break] List =
['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M']
[Text Wrapping Break] print("Initial List: ") [Text Wrapping Break] print(List)
[Text Wrapping Break]  [Text Wrapping Break] # Print elements from beginning
[Text Wrapping Break] # to a pre-defined point using Slice
[Text Wrapping Break] Sliced_List = List[:-7]
[Text Wrapping Break] print("\nElements sliced till 7th element from last: ")
[Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] #
 Print elements of a range [Text Wrapping Break] # using negative index List
slicing [Text Wrapping Break] Sliced_List = List[-6:-1]
[Text Wrapping Break] print("\nElements sliced from index -6 to -1")
[Text Wrapping Break] print(Sliced_List) [Text Wrapping Break]  [Text Wrapping Break] #
 Printing elements in reverse [Text Wrapping Break] # using Slice operation
[Text Wrapping Break] Sliced_List = List[::-1]
[Text Wrapping Break] print("\nPrinting List in reverse: ")
[Text Wrapping Break] print(Sliced_List)
Initial List: [Text Wrapping Break]
['P', 'Y', 'T', 'H','O', 'N', 'P', 'R', 'O', 'G', 'R', 'A', 'M'][Text Wrapping Break]
[Text Wrapping Break]Elements sliced till 7th element from last:
[Text Wrapping Break]['P', 'Y', 'T', 'H', 'O', 'N'][Text Wrapping Break]
[Text Wrapping Break]Elements sliced from index -6 to -1[Text Wrapping Break]
['R', 'O', 'G', 'R', 'A'][Text Wrapping Break] [Text Wrapping Break]Printing List
in reverse:[Text Wrapping Break]['M', 'A', 'R', 'G', 'O', 'R', 'P', 'N',
'O', 'H', 'T', 'Y', 'P']

Updating Lists

You can update single or multiple elements of lists by reassigning the values on the lists individually.

# Python program to update elements of a list[Text Wrapping Break]list =
['physics', 'chemistry', 1998, 2019];[Text Wrapping Break] print "Value
available at index 2 : "[Text Wrapping Break] print list[2]
[Text Wrapping Break] list[2] = 2000;[Text Wrapping Break] print "New value
available at index 2 : "[Text Wrapping Break] print list[2]
Value available at index 2 : [Text Wrapping Break] 1998 [Text Wrapping Break] New
value available at index 2 : [Text Wrapping Break] 2000

Built-in functions

FUNCTION DESCRIPTION

sum() Addsall numbers.

ord() Used for returning an integer which represents the unique Unicode code point of the given Unicode character.

cmp() If the first list is “greater” than the second list, the function returns 1.

max() It returns the largest element in the list.

min() It returns the smallest element in the list.

all() It returns true if all elements are true or false if any element in the list is empty.

any() It returns true if even one of the elements of the list is true. If one list is empty, it returns false.

len() It returns length the list.

enumerate() It adds a counter to an enumerate object that can be used directly for loops.

accumulate() It makes an iterator that gives the result of a function. It takes a function as an argument.

filter() It can individually check if every element is true or not.

map() It applies a particular function to each item of an iterable and shows a list of the results.

lambda() It is an anonymous function that behaves like a normal function in regard to arguments. While normal functions are defined with def keyword, anonymous functions are defined using lambda keyword.

List Methods

FUNCTION DESCRIPTION

Append() Adds an element at the end of the list

Extend() Adds all elements of one list to another list

Insert() Inserts an item at a desired index

Remove() Removes an item from the list

Pop() Removes and returns an element at a desired index

Clear() Removes all elements from the list

Index() Returns the index of the first identical item

Count() Returns the number of items passed as argument

Sort() Sort items of a list in ascending order

Reverse() Reverses the list

copy() Returns a copy of the list

Summary

In this article, we have covered the concept of Lists in Python. You have learned the basics of creating a List, adding value to it, accessing its elements, removing the elements, and various other operations. We have also covered some basic built-in functions of Python and several other methods along with their functions. To gain more knowledge about Python tips and tricks, check our Python tutorial and get a good hold over coding in Python by joining the Python certification course.

Priyankur

Priyankur Sarkar

Data Science Enthusiast

Priyankur Sarkar loves to play with data and get insightful results out of it, then turn those data insights and results in business growth. He is an electronics engineer with a versatile experience as an individual contributor and leading teams, and has actively worked towards building Machine Learning capabilities for organizations.

Join the Discussion

Your email address will not be published. Required fields are marked *

Suggested Blogs

Scala Vs Kotlin

Ever-changing requirements in coding have always been happening, ones that cause programmers to change their minds about using the appropriate programming language and tools to code. Java has been there for a long time, a really long time, 24 years ago. It is relatively easy to use, write, compile, debug, and learn than other programming languages. However, its certain inhibitions like slow performance, unavailability of any support for low-level programming, possessing poor features in GUI 4, and having no control over garbage collection is putting Java developers in a dilemma on choosing an alternative to Java, such as JetBrains’ programming language, Kotlin, presently an officially supported language for Android development or Scala, an all-purpose programming language supporting functional programming and a strong static type system. Today, we will discuss how developers can decide to choose Scala or Kotlin as an alternative to Java. We will briefly talk about Scala and Kotlin separately and talk about their application before moving forward to looking at the differences, advantages, and disadvantages of both and finally have you decide which one of these two suits your requirements. User’s requirement Before we begin, here is a question for the readers, ‘What are you looking for in the next programming language that you will use?’ It is an obvious question because the programming purposes drive the actual basis and need of developing a language. Do you need a language that strives to better Java or use a language that lets you do things that aren’t possible in Java? If it is the first reason, then Scala might be the best one for you, otherwise, it is a simplified programming language like Kotlin. Now let us first briefly discuss Scala and Kotlin individually. ScalaDeveloped by Martin Odersky, the first version of Scala was launched in the year 2003 and is a classic example of a  general-purpose, object-oriented computer language, offering a wide range of functional programming language features and a strong static type system. Inspired from Java itself, Scala, as the name suggests, is highly scalable and this very feature sets Scala apart from other programming languages. When we say that Scala is inspired from Java, that means developers can code Scala in the same way they do for Java. Additionally, Scala makes it possible to use numerous Java and libraries within itself as well. It is designed to be able to use an elegant, concise and type-safe method to express common programming patterns. Scala is a very popular programming language amongst developers and rising up its ranks in the world of technology. Although Scala comes with a number of plus points, there are some which make it a bit ineffective. Here are the strengths and weaknesses of Scala. Strengths: Full Support for Pattern Matching, Macros, and Higher-Kinded Types Has a very flexible code syntax Gets a bigger Community Support Enables overloading operators Weaknesses: Slow in compilation Challenging Binary Compilation Not so proficient in the Management of Null SafetyKotlin Developed by JetBrains, Kotlin was released on February 2012 as an open-source language. Until now, there have been two released versions with the latest one being Kotlin 1.2, the most stable version that was released on November 28, 2017. Since Kotlin is extremely compatible with Java 6 the latest version of Java on Android, it has gained critical acclaim on Android worldwide and additionally, it offers various key features that are prepared only for Java 8 and not even Java 6 developers have access to that. Kotlin provides seamless and flawless interoperability with Java. That means, developers can easily call Java codes from Kotlin and same goes the other way around. The built-in null safety feature avoids showing the NullPointerException (NPE) that makes developing android apps easy and joyful, something every android programmer wants. Below mentioned are the key pointers on the strengths and weaknesses of Kotlin. Strengths Takes a Functional Programming Approach and Object-Oriented Programming style(OOP) Style  Has Higher-Order Functions Short, Neat, and Verbose-Free Expression  Supported by JetBrains and Google. Weaknesses: More limited Pattern Matching Additional Runtime Size Initial Readability of Code Shortage of Official Support Smaller Support Community. Ease of learning: Scala vs Kotlin Scala is a powerful programming language packed with superior features and possesses a flexible syntax. It is not an easy language to learn and is a nightmare for newcomers. Kotlin, on the other hand, has been reported to have been an easy-to-learn language for many Java developers as getting started with Kotlin is relatively easy and so is writing codes. Even though it is a comparatively easier language to learn and code with, Kotlin lacks the solid set of features that is common in Scala. It might take less time to learn a programming language, but the most important thing to look for is a comprehensive array of features. Scala, even though a very difficult language to learn, is cherished by the developers as it lets them do things that cannot be done in Kotlin Here are the major differences between Scala and Kotlin: ScalaKotlinType inferenceEfficientImmutabilityExtension FunctionsSingleton objectMassive InteroperabilityConcurrency controlLessens Crashes at RuntimeString interpolationSmart Cast FunctionHigher-order functionSafe and ReliableCase classes and Pattern matching Lazy computationLow adoption costRich collection setMaking the appropriate choice of languageNow, whether you may like a programming language or not, if that very language helps you get the best out of your job, then you will have to live with it. These are the facts about getting the best results. The outcome is the main factor in you deciding the appropriate language for your job. Kotlin is the only option for Android development as Android doesn’t use JVM, so any old JVM-compatible language will not work in Android. Kotlin has it all what it takes to compile, debug, and run the software on Android because of which it is in-built into Android Studio. However, Kotlin is not so usable outside Android development. If you are one of the developers who like working with Eclipse for your IDE, then Scala IDE is better than the Kotlin Plugin even if you can make Eclipse work with both the languages with limitations. Scala IDE is more advanced than the Kotlin plugin and is easier to set up. Some developers found it quite difficult to make the Kotlin plugin work. This case is quite the same with NetBeans. Kotlin is still getting there but is already popular amongst Java developers as it offers an easier transition than Scala. Kotlin is still maturing, but many Java people find adopting it is an easier transition than Scala is.  Scala, however, is for developers who are focused more on discovering new ideas while Kotlin is for those who want to get results. Kotlin stresses fast compilation but is more restrictive while Scala gives a lot of flexibility. Go for Scala if you breathe functional programming! It has more appropriate features for this type of programming than Kotlin does. Scala supports currying and partial application, the methods of breaking down functions requiring multiple arguments offering more flexibility. Go for the one that is the most appropriate one for your work, style of working and what you are aiming at. Think before you leap. The Outcome At the end of the day, all that matters is what you want to use the language for. While Scala goes well for the projects that require a combination of functional, OOP style programming languages, and where programmers need to handle lots of data or complex modelling, Kotlin becomes the best choice when you want something less frustrating than Java while developing apps because using Kotlin makes app development less cumbersome and a great thing to work on. It is just like a better-looking version of Java with less lengthy codes. 
Rated 4.5/5 based on 19 customer reviews
7590
Scala Vs Kotlin

Ever-changing requirements in coding have always b... Read More

Xcode vs Swift

Xcode and Swift are two different products developed by Apple for macOS, iOS, iPadOS, watchOS, and tvOS. While Xcode is an integrated development environment (IDE) for macOS containing a suite of software development tools to develop software for macOS, iOS, iPadOS, watchOS, and tvOS, Swift is a general-purpose, multi-paradigm, compiled programming language developed iOS, macOS, watchOS, tvOS, Linux, and z/OS. So it is clear that they can not be compared with each other. On the contrary, Swift is compatible with Xcode as Swift v 5.1, the default version of Swift is included in Xcode v 11. In this article, we will go through what Xcode and Swift are in general and cover their features strengths and weaknesses followed by how Swift is compatible with Xcode. XcodeIt was first released in 2003 as version 1 with the latest stable one being version 10.2.1 released on 17 April 2019. It can be downloaded from the Mac App Store and is free to use for macOS Mojave users. Registered developers may download the preview releases and previous versions of the suite using via the Apple Developer website.  Overview of the major featuresSupport: Programming languages such as C, C++, Objective-C, Objective-C++, Java, AppleScript, Python, Ruby, ResEdit (Rez), and Swift are supported by Xcode with source code along with support for a variety of programming models including Cocoa, Carbo, and Java. Not only that, there is additional support via third parties for GNU Pascal, Free Pascal, Ada, C#, Perl, and D Capability: Xcode can build fat binary files that include the code for various architectures in the Mach-O executable format. Known as universal binary files, these allow the application to run on both PowerPC and Intel-based (x86) platforms including both 32-bit and 64-bit codes Compiling and debugging: Xcode uses the iOS SDK to compile and debug applications for iOS that run on ARM architecture processors GUI tool: Xcode comprises of the GUI tool, Instruments that runs dynamic tracing framework on the top of DTrace, a dynamic tracing framework designed by Sun Microsystems and released as a part of OpenSolaris. Advantages and disadvantages of Xcode: Xcode is designed by Apple and will only work with Apple operating systems: macOS, iOS, iPadOS, watchOS, and tvOS. Since its release in 2003, Xcode has made significant improvements and the latest version, Xcode 10.2.1 has all the features that are needed to perform continuous integration. Let us have a look at the pros of using Xcode: Equipped with a well designed and easy to use UI creator Excellent for code completion Using Xcode, a developer can learn profiling and heap analysis in a natural way Xcode’s simulator lets you easily test your app while you build it in an environment that simulates your iPhone The app store has a wide range of audience who are willing to pay for apps. Now, the cons: Clunky and outdated Objective C makes it more frustrating if you are habituated to use a modern language No support for tabbed work environments makes it difficult to work with multiple windows Hardly any information can be found online to solve problems due to a previous Apple NDA on Xcode development It is a complicated process to export your app onto a device Will only work with Apple operating systems The App Store approval process can be annoyingly lengthy.SwiftSwift was launched at Apple's 2014 Worldwide Developers Conference as a general-purpose, multi-paradigm, compiled programming language for iOS, macOS, watchOS, tvOS, Linux, and z/OS Being a new entry these operating systems, Swift accelerates on the best parts of C and Objective C without being held back by its compatibility. It utilises safe patterns for programming, adding more features to it, thus making programming easier and more flexible. By developing their existing debugger, compiler and framework infrastructure, it took quite some time to create the base for Swift. Furthermore, Automatic Reference Counting was used to simplify the memory management part. The framework stack which was once built upon a solid framework of Cocoa and Foundation has undergone significant changes and is now completely regulated and refurbished. Developers who have worked with Objective-C do find Swift quite similar. Objective-C’s dynamic object model and its comprehensively named parameters provide a lot of control to Swift.  Developers can use Swift to have access to the existing Cocoa framework in addition to the mix and match interoperability with an objective C code. Swift uses this common rule to offer multiple new features in combination with object-oriented and procedural portions of the language. The idea is to create the best possible language for a wide range of uses, varying from desktop and mobile apps, systems programming, and scaling up to cloud services. The designing of Swift was done to make sure that developers find it easy to maintain and write correct programs. Coding done in Xcode is safe, fast and expressive. Swift offers a host of features that give developers the control needed to make the code easy to read and write. Furthermore, Apple made Swift to be easily understandable to help developers avoid making mistakes while coding and make the code look organised, along with the modules that give namespaces and eliminate headers. Since Swift uses some features present in other languages, one of them being named parameters written with clean syntax that makes the APIs much easier to maintain and read. Here are some of the additional features of Swift: Multiple return values and Tuples Generics Short and quick iterations over a collection or range Structs that support extensions, methods and protocols Functional programming patterns Advanced control flow Powerful error handling. These features are systematically designed to make them work together resulting in creating a powerful but fun-to-use language. Advantages and disadvantages of Swift: Pros of using the Swift Programming language: Easy to read and maintain: The Swift program codes are based on natural English as it has borrowed syntaxes from other programming languages. This makes the language more expressive Scalable: Users can add more features to Swift, making it a scalable programming language. In the future, Swift is what Apple is relying on and not Objective C Concise: Swift does not include long lines of code and that favours the developers who want a concise syntax, thus increasing the development and testing rate of the program Safety and improved performance: It is almost 40% better than the Objective-C when speed and performance are taken into consideration as it is easy to tackle the bugs which lead to safer programming Cross-device support: This language is capable of handling a wide range of Apple platforms such as iOS, iOS X, macOS, tvOS, and watchOS. Automatic Memory Management: This feature present in Swift prevents memory leaks and helps in optimizing the application’s performance that is done by using Automatic Reference Counting. Cons of Swift: Compatibility issues: The updated versions Swift is found to a bit unstable with the newer versions of Apple leading to a few issues. Switching to a newer version of Swift is the fix but that is costly Speed Issues: This is relevant to the earlier versions of the Swift programming language Less in number: The number of Swift developers is limited as Swift is a new programming language Delay in uploading apps: Developers will be facing delays over their apps written in Swift to be uploaded to the App Store only after iOS 8 and Xcode 6 are released. The estimated time for release is reported to be September-October, 2014. Conclusion So as we discussed both Xcode and Swift, it is clear that they cannot be compared to each other. In fact, they both complement each other to deliver impressive results without any headaches. Apple relies on both quite a lot and it is certain to have Swift and Xcode the perfect combination of a robust application and a user-friendly programming language.
Rated 4.5/5 based on 11 customer reviews
8588
Xcode vs Swift

Xcode and Swift are two different products develop... Read More

ASP.NET VS PHP

ASP.NET and PHP are pretty popular languages in the programming world used by a huge number of developers and this makes it difficult for the new developers to choose either one of them. The comparison between these two has been in debate in recent times. Both of these languages are used in large web-based applications. Some successful companies like Google, Facebook, and Twitter, etc, also use these languages. In this article, we will understand the differences between PHP and ASP.Net also, will discuss which is better ASP.NET or PHP.Before we learn more about the differences between the two languages, we must first understand some basics of the two technologies:PHPPHP stands for Hypertext Preprocessor. It is an open-source programming language that is used for web development and can be embedded into HTML. The best part of PMP is that it’s free and possesses a  ton of frameworks which simplifies web development and also great for beginners since it allows simple and easy coding techniques. PHP is great for professionals as well because of its advanced features.Why use a PHP framework?A PHP framework provides a basic structure for streamlining the development of web apps. The applications and websites built using PHP frameworks will help the businesses to improve their performance needs.The best PHP frameworks available:LaravelCodeIgniterSymfonyZendPhalconCakePHPYiiFuelPHPPros and Cons of PHP frameworkPros:Rapid Development                                              Centralized DatabaseStronger TeamworkMakes your application more secure               Cons:Slower ExecutionPHP is unsecuredPoor error handling methodLimited Visibility and ControlDemand for PHP Developer:In today’s web development market, most of the websites are developed using PHP development tools which indicates a huge demand for PHP developers. If you are looking to make an entry to the IT world as a developer, then PHP programming will be an easy entry point.Taking up a PHP training from an authentic and reliable training provider will be a great platform to hone your skills.ASP.NETASP.NET is an open-source server-side web development tool developed by Microsoft for easy building of web applications and web pages. It can be written using any .Net supported language which makes it more popular among .NET developers. High speed and low cost are the main reasons to use it. Websites built ASP.NET is faster and more efficient than a website built with PHP.Pros and Cons of ASP.NET frameworkPros:Less coding timeWorld class toolboxConsistencyCustomizability and ExtensibilityCons:Limited Object-Relational (OR) supportBit expensiveSlower than Native CodeDemand for ASP.NET Developer:If you are a .NET developer, you will find yourself demanded by several asp.net development companies as your programming skills are extremely valuable in today’s market. There are many companies hunting for developers who can do programming with .NET. Therefore, it is advisable that you brush up your skills with ASP.NET Certification Training which will increase your value many times and have an edge over others. The ASP.NET Certification Training program will definitely make your future bright and offer you heaps of career opportunities. Whether you are a fresher or a working professional, you can take up the certification course.Comparison Between ASP.NET and PHPBoth ASP.NET and PHP frameworks are effective frameworks to work with, however, one may have few advantages over the other. Let’s dive deeper and compare these frameworks to understand which one is better than the other.1. Market Share:According to the report, BuiltWith data source PHP is the most used programming language which has 73% of market share, ASP.NET has 23% of market share. PHP also has a market share of 58% in top 100K websites and market share of PHP in 10K websites is 52%.Statistics for websites using Programming Language technologies:2. WebsitesHere are two lists to compare ASP.NET vs PHP websites:Websites built using PHPWebsites built using ASP.NETWikipediaFacebookYahooWordPress.comiStockPhotoMicrosoftDellGoDaddy3. Inbuilt featuresPHP has many unique in-built features that can help web developers. On the other hand, ASP.NET doesn’t have any such features.4. Speed and PerformanceWhen you compare PHP vs. ASP.NET for speed, PHP will be the winner. ASP.NET is a bit slow compared to PHP as it is built on the COM-based system whereas, PHP program runs on its own memory space.5. Community SupportCompared to ASP.NET, learning support is great in the PHP framework and has a large support community. It will be difficult for you to get hold of #C language of ASP.NET as it is difficult to understand.Key differences between ASP.NET vs PHPPHPASP.NETPHP was launched by Rasmus Lerdorf in the year 1995.ASP.NET was launched by Microsoft in the year 2002.PHP is a scripting languageASP.NET is a paid Microsoft provided web application framework.PHP suits for small sized organizationsASP.NET suits for a large and medium-sized organization.PHP has a decent market share in the  marketASP.NET has a higher market sharePHP works slow for desktop applicationsASP.NET is well equipped to assist and create desktop applications.PHP suits best for applications that contain a prime focus on UIASP.NET suits better for applications where the key concern is security.Easy to learnQuite challenging to learn.Coding using PHP is easy when compared to all other languagesCoding with ASP.NET is complicatedPHP execution is faster since it uses in-built memory spaceCoding with ASP.NET is complicatedPHP can run in Linux Operating System which is available for freeASP.NET requires a Windows platform which is not freeConclusionBoth PHP and ASP.NET come with their pros and cons. PHP is secure, fast, reliable, and inexpensive and ASP.NET is easier to use and maintain because of its class library system. Since both programming languages are similar and accomplish the same results so the company can make a choice based on the needs and requirements of the app they are about to develop.
Rated 4.5/5 based on 1 customer reviews
7708
ASP.NET VS PHP

ASP.NET and PHP are pretty popular languages in th... Read More

20% Discount