Search

Python Programming Filter

How To Write Beautiful Python Code With PEP 8

It gets difficult to understand a messed up handwriting, similarly an unreadable and unstructured code is not accepted by all. However, you can benefit as a programmer only when you can express better with your code. This is where PEP comes to the rescue. Python Enhancement Proposal or PEP is a design document which provides information to the Python community and also describes new features and document aspects, such as style and design for Python.Python is a multi-paradigm programming language which is easy to learn and has gained popularity in the fields of Data Science and Web Development over a few years and PEP 8 is called the style code of Python. It was written by Guido van Rossum, Barry Warsaw, and Nick Coghlan in the year 2001. It focuses on enhancing Python’s code readability and consistency. Join the certification course on Python Programming and gain skills and knowledge about various features of Python along with tips and tricks.A Foolish Consistency is the Hobgoblin of Little Minds‘A great person does not have to think consistently from one day to the next’ — this is what the statement means.Consistency is what matters. It is considered as the style guide. You should maintain consistency within a project and mostly within a function or module.However, there will be situations where you need to make use of your own judgement, where consistency isn’t considered an option. You must know when you need to be inconsistent like for example when applying the guideline would make the code less readable or when the code needs to comply with the earlier versions of Python which the style guide doesn’t recommend. In simple terms, you cannot break the backward compatibility to follow with PEP.The Zen of PythonIt is a collection of 19 ‘guiding principles’ which was originally written by Tim Peters in the year 1999. It guides the design of the Python Programming Language.Python was developed with some goals in mind. You can see those when you type the following code and run it:>>> import this The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!The Need for PEP 8Readability is the key to good code. Writing good code is like an art form which acts as a subjective topic for different developers.Readability is important in the sense that once you write a code, you need to remember what the code does and why you have written it. You might never write that code again, but you’ll have to read that piece of code again and again while working in a project. PEP 8 adds a logical meaning to your code by making sure your variables are named well, sufficient whitespaces are there or not and also by commenting well. If you’re a beginner to the language, PEP 8 would make your coding experience more pleasant.Following PEP 8 would also make your task easier if you’re working as a professional developer. People who are unknown to you and have never seen how you style your code will be able to easily read and understand your code only if you follow and recognize a particular guideline where readability is your de facto.And as Guido van Rossum said— “Code is read much more than it is often written”.The Code LayoutYour code layout has a huge impact on the readability of your code.IndentationThe indentation level of line is computed by the leading spaces and tabs at the beginning of a line of logic. It influences the grouping of statements. The rules of PEP 8 says to use 4 spaces per indentation level and also spaces should be preferred over tabs.An example of code to show indentation:x = 5 if x < 10:   print('x is less than 10') Tabs or Spaces?Here the print statement is indented which informs Python to execute the statement only if the if statement is true. Indentation also helps Python to know what code it will execute during function calls and also when using classes.PEP 8 recommends using 4 spaces to show indentation and tabs should only be used to maintain consistency in the code.Python 3 forbids the mixing of spaces and tabs for indentation. You can either use tabs or spaces and you should maintain consistency while using Python 3. The errors are automatically displayed:python hello.py  File "hello.py", line 3       print(i, j)                 ^TabError: inconsistent use of tabs and spaces in indentationHowever, if you’re working in Python 2, you can check the consistency by using a -t flag in your code which will display the warnings of inconsistencies with the use of spaces and tabs.You can also use the -tt flag which will show the errors instead of warnings and also the location of inconsistencies in your code. Maximum Line Length and Line BreakingThe Python Library is conservative and 79 characters are the maximum required line limit as suggested by PEP 8. This helps to avoid line wrapping.Since maintaining the limit to 79 characters isn’t always possible, so PEP 8 allows wrapping lines using Python’s implied line continuation with parentheses, brackets, and braces:def function(argument_1, argument_2,             argument_3, argument_4):     return argument_1Or by using backslashes to break lines:with open('/path/to/some/file/you/want/to/read') as example_1, \     open('/path/to/some/file/being/written', 'w') as example_2:     file_2.write(file_1.read())When it comes to binary operators, PEP 8 encourages to break lines before the binary operators. This accounts for more readable code.Let us understand this by comparing two examples:# Example 1 # Do total = ( variable_1 + variable_2 - variable_3 ) # Example 2 # Don't total = ( variable_1 + variable_2 - variable_3 )In the first example, it is easily understood which variable is added or subtracted, since the operator is just next to the variable to which it is operated. However, in the second example, it is a little difficult to understand which variable is added or subtracted.Indentation with Line BreaksIndentation allows a user to differentiate between multiple lines of code and a single line of code that spans multiple lines. It enhances readability too.The first style of indentation is to adjust the indented block with the delimiter:def function(argument_one, argument_two,               argument_three, argument_four):         return argument_oneYou can also improve readability by adding comments:x = 10 if (x > 5 and     x < 20):     # If Both conditions are satisfied     print(x)Or by adding extra indentation:x = 10 if (x > 5 and       x < 20):     print(x)Another type of indentation is the hanging indentation by which you can symbolize a continuation of a line of code visually:foo = long_function_name(       variable_one, variable_two,       variable_three, variable_four)You can choose any of the methods of indentation, following line breaks, in situations where the 79 character line limit forces you to add line breaks in your code, which will ultimately improve the readability.Closing Braces in Line ContinuationsClosing the braces after line breaks can be easily forgotten, so it is important to put it somewhere where it makes good sense or it can be confusing for a reader.One way provided by PEP 8 is to put the closing braces with the first white-space character of the last line:my_list_of_numbers = [     1, 2, 3,     4, 5, 6,     7, 8, 9     ]Or lining up under the first character of line that initiates the multi-line construct:my_list_of_numbers = [     1, 2, 3,     4, 5, 6,     7, 8, 9 ]Remember, you can use any of the two options keeping in mind the consistency of the code.Blank LinesBlank lines are also called vertical whitespaces. It is a logical line consisting of spaces, tabs, formfeeds or comments that are basically ignored.Using blank lines in top-level-functions and classes:class my_first_class:     pass class my_second_class:     pass def top_level_function():     return NoneAdding two blank lines between the top-level-functions and classes will have a clear separation and will add more sensibility to the code.Using blank lines in defining methods inside classes:class my_class:     def method_1(self):         return None     def method_2(self):         return NoneHere, a single vertical space is enough for a readable code.You can also use blank spaces inside multi-step functions. It helps the reader to gather the logic of your function and understand it efficiently. A single blank line will work in such case.An example to illustrate such:def calculate_average(number_list):     sum_list = 0     for number in number_list:         sum_list = sum_list + number         average = 0     average = sum_list / len(number_list)    return averageAbove is a function to calculate the average. There is a blank line between each step and also before the return statement.The use of blank lines can greatly improve the readability of your code and it also allows the reader to understand the separation of the sections of code and the relation between them.Naming ConventionsChoosing names which are sensible and can be easily understandable, while coding in Python, is very crucial. This will save time and energy of a reader. Inappropriate names might lead to difficulties when debugging.Naming StylesNaming variables, functions, classes or methods must be done very carefully. Here’s a list of the type, naming conventions and examples on how to use them:TypeNaming ConventionsExamplesVariableUsing short names with CapWords.T, AnyString, My_First_VariableFunctionUsing a lowercase word or words with underscores to improve readability.function, my_first_functionClassUsing CapWords and do not use underscores between words.Student, MyFirstClassMethodUsing lowercase words separated by underscores.Student_method, methodConstantsUsing all capital letters with underscores separating wordsTOTAL, MY_CONSTANT, MAX_FLOWExceptionsUsing CapWords without underscores.IndexError, NameErrorModuleUsing short lower-case letters using underscores.module.py, my_first_module.pyPackageUsing short lowercase words and underscores are discouraged.package, my_first_packageChoosing namesTo have readability in your code, choose names which are descriptive and give a clearer sense of what the object represents. A more real-life approach to naming is necessary for a reader to understand the code.Consider a situation where you want to store the name of a person as a string:>>> name = 'John William' >>> first_name, last_name = name.split() >>> print(first_name, last_name, sep='/ ') John/ WilliamHere, you can see, we have chosen variable names like first_name and last_name which are clearer to understand and can be easily remembered. We could have used short names like x, y or z but it is not recommended by PEP 8 since it is difficult to keep track of such short names.Consider another situation where you want to double a single argument. We can choose an abbreviation like db for the function name:# Don't def db(x):     return x * 2However, abbreviations might be difficult in situations where you want to return back to the same code after a couple of days and still be able to read and understand. In such cases, it’s better to use a concise name like double_a_variable:# Do def double_a_value(x):     return x * 2Ultimately, what matters is the readability of your code.CommentsA comment is a piece of code written in simple English which improves the readability of code without changing the outcome of a program. You can understand the aim of the code much faster just by reading the comments instead of the actual code. It is important in analyzing codes, debugging or making a change in logic. Block CommentsBlock comments are used while importing data from files or changing a database entry where multiples lines of code are written to focus on a single action. They help in interpreting the aim and functionality of a given block of code.They start with a hash(#) and a single space and always indent to the same level as the code:for i in range(0, 10):     # Loop iterates 10 times and then prints i     # Newline character     print(i, '\n')You can also use multiple paragraphs in a block comment while working on a more technical program. Block comments are the most suitable type of comments and you can use it anywhere you like.Inline CommentsInline comments are the comments which are placed on the same line as the statement. They are helpful in explaining why a certain line of code is essential.Example of inline comments:x = 10  # An inline comment y = 'JK Rowling' # Author NameInline comments are more specific in nature and can easily be used which might lead to clutter. So, PEP 8 basically recommends using block comments for general-purpose coding.Document StringsDocument strings or docstrings start at the first line of any function, class, file, module or method. These type of comments are enclosed between single quotations ( ''') or double quotations ( """ ).An example of docstring:def quadratic_formula(x, y, z, t):     """Using the quadratic formula"""     t_1 = (- b+(b**2-4*a*c)**(1/2)) / (2*a)     t_2 = (- b-(b**2-4*a*c)**(1/2)) / (2*a)     return t_1, t_2Whitespaces in Expressions and StatementsIn computing, whitespace is any character or sequence of characters which are used for spacing and have an ‘empty’ representation. It is helpful in improving the readability of expressions and statements if used properly.Whitespace around Binary OperatorsWhen you’re using assignment operators ( =, +=, -=,and so forth ) or comparisons ( ==, !=, >, <. >=, <= ) or booleans ( and, not, or ), it is suggested to use a single whitespace on the either side.Example of adding whitespace when there is more than one operator in a statement:# Don't b = a ** 2 + 10 c = (a + b) * (a - b) # Do b = a**2 + 10 c = (a+b) * (a-b)In such mathematical computations, you should add whitespace around the operators with the least priority since adding spaces around each operator might be confusing for a reader.Example of adding whitespaces in an if statement with many conditions:# Don't if a < 10 and a % 5 == 0:     print('a is smaller than 10 and is divisible by 5!') # Do if a<10 and a%5==0:     print('a is smaller than 10 and is divisible by 5!')Here, the and operator has the least priority, so whitespaces have been added around it.Colons act as binary operators in slices:ham[3:4]ham[x+1 : x+2]ham[3:4:5]ham[x+1 : x+2 : x+3]ham[x+1 : x+2 :]Since colons act as a binary operator, whitespaces are added on either side of the operator with the lowest priority. Colons must have the same amount of spacing in case of an extended slice. An exception is when the slice parameter is omitted, space is also omitted.Avoiding WhitespacesTrailing whitespaces are whitespaces placed at the end of a line. These are the most important to avoid. You should avoid whitespaces in the following cases—Inside a parentheses, brackets, or braces:# Do list = [1, 2, 3] # Don't list = [ 1, 2, 3, ]Before a comma, a semicolon, or a colon:x = 2 y = 3 # Do print(x, y) # Don't print(x , y)Before open parenthesis that initiates the argument list of a function call:def multiply_by_2(a):       return a * 2 # Do multiply_by_2(3) # Don't multiply_by_2 (3)Before an open bracket that begins an index or a slice:# Do ham[5] # Don't ham [5]Between a trailing comma and a closing parenthesis:# Do spam = (1,) # Don't spam = (1, )To adjust assignment operators:# Do variable_1 = 5 variable_2 = 6 my_long_var = 7 # Don't variable_1    = 5 variable_2    = 6 my_long_var  = 7Programming RecommendationsPEP 8 guidelines suggest different ways to maintain consistency among multiple implementations of Python like PyPy, Jython or Cython.An example of comparing boolean values:# Don't bool_value = 5 > 4 if bool_value == True: return '4 is smaller than 5' # Do if bool_value: return '4 is smaller than 5'Since bool can only accept values True or False, it is useless to use the equivalence operator == in these type of if executions. PEP 8 recommends the second example which will require lesser and simpler coding. An example to check whether a list is empty or not:# Don't list_value = [] if not len(list_value):     print('LIST IS EMPTY') # Do list_value = [] if not list_value:     print('LIST IS EMPTY')Any empty list or string in Python is falsy. So you can write a code to check an empty string without checking the length of the list. The second example is more simple, so PEP encourages to write an if statement in this way.The expression is not and not ... is are identical in functionality. But the former is more preferable due to its nature of readability:# Do if x is not None:     return 'x has a value' # Don't if not x is None:     return 'x has a value'String slicing is a type of indexing syntax that extracts substrings from a string. Whenever you want to check if a string is prefixed or suffixed, PEP recommends using .startswith() and .endswith() instead of list slicing. This is because they are cleaner and have lesser chances of error:# Do if foo.startswith('cat'): # Don't if foo[:3] == 'cat':An example using .endswith():# Don't if file_jpg[-3:] == 'jpg':     print('It is a JPEG image file') # Do if file_jpg.endswith('jpg'):     print('It is a JPEG image file')Though there exists multiple ways to execute a particular action, the main agenda of the guidelines laid by PEP 8 is simplicity and readability.When to Ignore PEP 8You should never ignore PEP 8. If the guidelines related to PEP8 are followed, you can be confident of writing readable and professional codes. This will also make the lives of your  colleagues and other members working on the same project much easier. There are some exclusive instances when you may ignore a particular guideline:After following the guidelines, the code becomes less readable, even for a programmer who is comfortable with reading codes that follow PEP 8.If the surrounding code is inconsistent with PEP.Compatible of code with older version of Python is the priority.Checking PEP 8 Compliant CodeYou can check whether your code actually complies with the rules and regulations of PEP 8 or not. Linters and Autoformatters are two classes of tools used to implement and check PEP 8 compliance.LintersIt is a program that analyzes your code and detects program errors, syntax errors, bugs and structural problems. They also provide suggestions to correct the errors.Some of the best linters used for Python code:pycodestyle is a tool to verify the PEP 8 style conventions in your Python code.You can run the following from the command line to install pycodestyle using pip:pip install pycodestyleTo display the errors of a program, run pycodestyle in this manner:pycodestyle my_code.pymy_code.py:1:11: E231 missing whitespace after '{'my_code.py:3:19: E231 missing whitespace after ')'my_code.py:4:31: E302 expected 2 blank lines, found 1flake8 is a Python wrapper that verifies PEP 8, pyflakes, and circular complexity.Type the command to install flake8 using pip:pip install flake8Run flake8 from the terminal using the command:flake8 calc.py calc.py:24:3: E111 indentation is not a multiple of twocalc.py:25:3: E111 indentation is not a multiple of twocalc.py:45:9: E225 missing whitespace around operatorYou can also use some other good linters like pylint, pyflakes, pychecker and mypy.AutoformattersAn autoformatter is a tool which will format your code to adapt with PEP 8 automatically.One of the most commonly used autoformatter is black.To install black using pip, type:pip install blackRemember, you need to have Python 3.6 or above to install black.An example of code that doesn’t follow PEP 8:def add(a, b): return a+b def multiply(a, b):       return \         a   * bNow run black following the filename from the terminal:black my_code.pyreformatted my_code.pyAll done! The reformatted code will look like:def add(a, b):     return a + b def multiply(a, b):     return a * bSome other autoformatters include autopep8 and yapf. Their work is similar to black.ConclusionSince you have now learnt to write a good-quality and readable Python code using PEP 8, you’ll consider it a bliss while working in a project. Though it might be too precise in its nature, it will be useful to everyone working in a particular project by making the code more understandable and making changes and debugging easier.Let us sum up what we’ve learnt so far:What is PEP 8 and what is its importance.Multiple guidelines for writing PEP 8 compliant code.How to check code against PEP 8 using linters and autoformatters.If you intend to know more about PEP 8 and its book of guidelines, you can refer to pep8.org or simply enroll for the Python certification course offered by KnowledgeHut.
Rated 4.5/5 based on 1 customer reviews

How To Write Beautiful Python Code With PEP 8

8990
How To Write Beautiful Python Code With PEP 8

It gets difficult to understand a messed up handwriting, similarly an unreadable and unstructured code is not accepted by all. However, you can benefit as a programmer only when you can express better with your code. This is where PEP comes to the rescue. 

Python Enhancement Proposal or PEP is a design document which provides information to the Python community and also describes new features and document aspects, such as style and design for Python.

Python is a multi-paradigm programming language which is easy to learn and has gained popularity in the fields of Data Science and Web Development over a few years and PEP 8 is called the style code of Python. It was written by Guido van Rossum, Barry Warsaw, and Nick Coghlan in the year 2001. It focuses on enhancing Python’s code readability and consistency. Join the certification course on Python Programming and gain skills and knowledge about various features of Python along with tips and tricks.

A Foolish Consistency is the Hobgoblin of Little Minds

‘A great person does not have to think consistently from one day to the next’ — this is what the statement means.

Consistency is what matters. It is considered as the style guide. You should maintain consistency within a project and mostly within a function or module.

However, there will be situations where you need to make use of your own judgement, where consistency isn’t considered an option. You must know when you need to be inconsistent like for example when applying the guideline would make the code less readable or when the code needs to comply with the earlier versions of Python which the style guide doesn’t recommend. 

In simple terms, you cannot break the backward compatibility to follow with PEP.

The Zen of Python

It is a collection of 19 ‘guiding principles’ which was originally written by Tim Peters in the year 1999. It guides the design of the Python Programming Language.

Python was developed with some goals in mind. You can see those when you type the following code and run it:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

The Need for PEP 8

Readability is the key to good code. Writing good code is like an art form which acts as a subjective topic for different developers.

Readability is important in the sense that once you write a code, you need to remember what the code does and why you have written it. You might never write that code again, but you’ll have to read that piece of code again and again while working in a project. 

PEP 8 adds a logical meaning to your code by making sure your variables are named well, sufficient whitespaces are there or not and also by commenting well. If you’re a beginner to the language, PEP 8 would make your coding experience more pleasant.

Following PEP 8 would also make your task easier if you’re working as a professional developer. People who are unknown to you and have never seen how you style your code will be able to easily read and understand your code only if you follow and recognize a particular guideline where readability is your de facto.

And as Guido van Rossum said— “Code is read much more than it is often written”.

The Code Layout

Your code layout has a huge impact on the readability of your code.

Indentation

The indentation level of line is computed by the leading spaces and tabs at the beginning of a line of logic. It influences the grouping of statements. 

The rules of PEP 8 says to use 4 spaces per indentation level and also spaces should be preferred over tabs.

An example of code to show indentation:

x = 5
if x < 10:
  print('x is less than 10') 

Tabs or Spaces?

Here the print statement is indented which informs Python to execute the statement only if the if statement is true. Indentation also helps Python to know what code it will execute during function calls and also when using classes.

PEP 8 recommends using 4 spaces to show indentation and tabs should only be used to maintain consistency in the code.

Python 3 forbids the mixing of spaces and tabs for indentation. You can either use tabs or spaces and you should maintain consistency while using Python 3. The errors are automatically displayed:

python hello.py
  File "hello.py", line 3
      print(i, j)
                ^

TabError: inconsistent use of tabs and spaces in indentation

However, if you’re working in Python 2, you can check the consistency by using a -t flag in your code which will display the warnings of inconsistencies with the use of spaces and tabs.

You can also use the -tt flag which will show the errors instead of warnings and also the location of inconsistencies in your code. 

Maximum Line Length and Line Breaking

The Python Library is conservative and 79 characters are the maximum required line limit as suggested by PEP 8. This helps to avoid line wrapping.

Since maintaining the limit to 79 characters isn’t always possible, so PEP 8 allows wrapping lines using Python’s implied line continuation with parentheses, brackets, and braces:

def function(argument_1, argument_2,
            argument_3, argument_4):
    return argument_1

Or by using backslashes to break lines:

with open('/path/to/some/file/you/want/to/read') as example_1, \
    open('/path/to/some/file/being/written', 'w') as example_2:
    file_2.write(file_1.read())

When it comes to binary operators, PEP 8 encourages to break lines before the binary operators. This accounts for more readable code.

Let us understand this by comparing two examples:

# Example 1
# Do
total = ( variable_1 + variable_2 - variable_3 )
# Example 2
# Don't
total = ( variable_1 + variable_2 - variable_3 )

In the first example, it is easily understood which variable is added or subtracted, since the operator is just next to the variable to which it is operated. However, in the second example, it is a little difficult to understand which variable is added or subtracted.

Indentation with Line Breaks

Indentation allows a user to differentiate between multiple lines of code and a single line of code that spans multiple lines. It enhances readability too.

The first style of indentation is to adjust the indented block with the delimiter:

def function(argument_one, argument_two,
              argument_three, argument_four):
        return argument_one

You can also improve readability by adding comments:

x = 10
if (x > 5 and
    x < 20):
    # If Both conditions are satisfied
    print(x)

Or by adding extra indentation:

x = 10
if (x > 5 and
      x < 20):
    print(x)

Another type of indentation is the hanging indentation by which you can symbolize a continuation of a line of code visually:

foo = long_function_name(
      variable_one, variable_two,
      variable_three, variable_four)

You can choose any of the methods of indentation, following line breaks, in situations where the 79 character line limit forces you to add line breaks in your code, which will ultimately improve the readability.

Closing Braces in Line Continuations

Closing the braces after line breaks can be easily forgotten, so it is important to put it somewhere where it makes good sense or it can be confusing for a reader.

One way provided by PEP 8 is to put the closing braces with the first white-space character of the last line:

my_list_of_numbers = [
    1, 2, 3,
    4, 5, 6,
    7, 8, 9
    ]

Or lining up under the first character of line that initiates the multi-line construct:

my_list_of_numbers = [
    1, 2, 3,
    4, 5, 6,
    7, 8, 9
]

Remember, you can use any of the two options keeping in mind the consistency of the code.

Blank Lines

Blank lines are also called vertical whitespaces. It is a logical line consisting of spaces, tabs, formfeeds or comments that are basically ignored.

Using blank lines in top-level-functions and classes:

class my_first_class:
    pass
class my_second_class:
    pass
def top_level_function():
    return None

Adding two blank lines between the top-level-functions and classes will have a clear separation and will add more sensibility to the code.

Using blank lines in defining methods inside classes:

class my_class:
    def method_1(self):
        return None

    def method_2(self):
        return None

Here, a single vertical space is enough for a readable code.

You can also use blank spaces inside multi-step functions. It helps the reader to gather the logic of your function and understand it efficiently. A single blank line will work in such case.

An example to illustrate such:

def calculate_average(number_list):
    sum_list = 0
    for number in number_list:
        sum_list = sum_list + number
   
    average = 0
    average = sum_list / len(number_list)

   return average

Above is a function to calculate the average. There is a blank line between each step and also before the return statement.

The use of blank lines can greatly improve the readability of your code and it also allows the reader to understand the separation of the sections of code and the relation between them.

Naming Conventions

Choosing names which are sensible and can be easily understandable, while coding in Python, is very crucial. This will save time and energy of a reader. Inappropriate names might lead to difficulties when debugging.

Naming Styles

Naming variables, functions, classes or methods must be done very carefully. Here’s a list of the type, naming conventions and examples on how to use them:

TypeNaming ConventionsExamples
VariableUsing short names with CapWords.T, AnyString, My_First_Variable
FunctionUsing a lowercase word or words with underscores to improve readability.function, my_first_function
ClassUsing CapWords and do not use underscores between words.Student, MyFirstClass
MethodUsing lowercase words separated by underscores.Student_method, method
ConstantsUsing all capital letters with underscores separating wordsTOTAL, MY_CONSTANT, MAX_FLOW
ExceptionsUsing CapWords without underscores.IndexError, NameError
ModuleUsing short lower-case letters using underscores.module.py, my_first_module.py
PackageUsing short lowercase words and underscores are discouraged.package, my_first_package

Choosing names

To have readability in your code, choose names which are descriptive and give a clearer sense of what the object represents. A more real-life approach to naming is necessary for a reader to understand the code.

Consider a situation where you want to store the name of a person as a string:

>>> name = 'John William'
>>> first_name, last_name = name.split()
>>> print(first_name, last_name, sep='/ ')
John/ William

Here, you can see, we have chosen variable names like first_name and last_name which are clearer to understand and can be easily remembered. We could have used short names like x, y or z but it is not recommended by PEP 8 since it is difficult to keep track of such short names.

Consider another situation where you want to double a single argument. We can choose an abbreviation like db for the function name:

# Don't
def db(x):
    return x * 2

However, abbreviations might be difficult in situations where you want to return back to the same code after a couple of days and still be able to read and understand. In such cases, it’s better to use a concise name like double_a_variable:

# Do
def double_a_value(x):
    return x * 2

Ultimately, what matters is the readability of your code.

Comments

A comment is a piece of code written in simple English which improves the readability of code without changing the outcome of a program. You can understand the aim of the code much faster just by reading the comments instead of the actual code. It is important in analyzing codes, debugging or making a change in logic. 

Block Comments

Block comments are used while importing data from files or changing a database entry where multiples lines of code are written to focus on a single action. They help in interpreting the aim and functionality of a given block of code.

They start with a hash(#) and a single space and always indent to the same level as the code:

for i in range(0, 10):
    # Loop iterates 10 times and then prints i
    # Newline character
    print(i, '\n')

You can also use multiple paragraphs in a block comment while working on a more technical program. 

Block comments are the most suitable type of comments and you can use it anywhere you like.

Inline Comments

Inline comments are the comments which are placed on the same line as the statement. They are helpful in explaining why a certain line of code is essential.

Example of inline comments:

x = 10  # An inline comment
y = 'JK Rowling' # Author Name

Inline comments are more specific in nature and can easily be used which might lead to clutter. So, PEP 8 basically recommends using block comments for general-purpose coding.

Document Strings

Document strings or docstrings start at the first line of any function, class, file, module or method. These type of comments are enclosed between single quotations ( ''') or double quotations ( """ ).

An example of docstring:

def quadratic_formula(x, y, z, t):
    """Using the quadratic formula"""
    t_1 = (- b+(b**2-4*a*c)**(1/2)) / (2*a)
    t_2 = (- b-(b**2-4*a*c)**(1/2)) / (2*a)

    return t_1, t_2

Whitespaces in Expressions and Statements

In computing, whitespace is any character or sequence of characters which are used for spacing and have an ‘empty’ representation. It is helpful in improving the readability of expressions and statements if used properly.

Whitespace around Binary Operators

When you’re using assignment operators ( =, +=, -=,and so forth ) or comparisons ( ==, !=, >, <. >=, <= ) or booleans ( and, not, or ), it is suggested to use a single whitespace on the either side.

Example of adding whitespace when there is more than one operator in a statement:

# Don't
b = a ** 2 + 10
c = (a + b) * (a - b)

# Do
b = a**2 + 10
c = (a+b) * (a-b)

In such mathematical computations, you should add whitespace around the operators with the least priority since adding spaces around each operator might be confusing for a reader.

Example of adding whitespaces in an if statement with many conditions:

# Don't
if a < 10 and a % 5 == 0:
    print('a is smaller than 10 and is divisible by 5!')

# Do
if a<10 and a%5==0:
    print('a is smaller than 10 and is divisible by 5!')

Here, the and operator has the least priority, so whitespaces have been added around it.

Colons act as binary operators in slices:

ham[3:4]

ham[x+1 : x+2]

ham[3:4:5]

ham[x+1 : x+2 : x+3]

ham[x+1 : x+2 :]

Since colons act as a binary operator, whitespaces are added on either side of the operator with the lowest priority. Colons must have the same amount of spacing in case of an extended slice. An exception is when the slice parameter is omitted, space is also omitted.

Avoiding Whitespaces

Trailing whitespaces are whitespaces placed at the end of a line. These are the most important to avoid. 

You should avoid whitespaces in the following cases—

Inside a parentheses, brackets, or braces:

# Do
list = [1, 2, 3]

# Don't
list = [ 1, 2, 3, ]

Before a comma, a semicolon, or a colon:

x = 2
y = 3

# Do
print(x, y)

# Don't
print(x , y)

Before open parenthesis that initiates the argument list of a function call:

def multiply_by_2(a):
      return a * 2

# Do
multiply_by_2(3)

# Don't
multiply_by_2 (3)

Before an open bracket that begins an index or a slice:

# Do
ham[5]

# Don't
ham [5]

Between a trailing comma and a closing parenthesis:

# Do
spam = (1,)

# Don't
spam = (1, )

To adjust assignment operators:

# Do
variable_1 = 5
variable_2 = 6
my_long_var = 7

# Don't
variable_1    = 5
variable_2    = 6
my_long_var  = 7

Programming Recommendations

PEP 8 guidelines suggest different ways to maintain consistency among multiple implementations of Python like PyPy, Jython or Cython.

An example of comparing boolean values:

# Don't
bool_value = 5 > 4
if bool_value == True:
return '4 is smaller than 5'

# Do
if bool_value:
return '4 is smaller than 5'

Since bool can only accept values True or False, it is useless to use the equivalence operator == in these type of if executions. PEP 8 recommends the second example which will require lesser and simpler coding. 

An example to check whether a list is empty or not:

# Don't
list_value = []
if not len(list_value):
    print('LIST IS EMPTY')

# Do
list_value = []
if not list_value:
    print('LIST IS EMPTY')

Any empty list or string in Python is falsy. So you can write a code to check an empty string without checking the length of the list. The second example is more simple, so PEP encourages to write an if statement in this way.

The expression is not and not ... is are identical in functionality. But the former is more preferable due to its nature of readability:

# Do
if x is not None:
    return 'x has a value'

# Don't
if not x is None:
    return 'x has a value'

String slicing is a type of indexing syntax that extracts substrings from a string. Whenever you want to check if a string is prefixed or suffixed, PEP recommends using .startswith() and .endswith() instead of list slicing. This is because they are cleaner and have lesser chances of error:

# Do
if foo.startswith('cat'):

# Don't
if foo[:3] == 'cat':

An example using .endswith():

# Don't
if file_jpg[-3:] == 'jpg':
    print('It is a JPEG image file')

# Do
if file_jpg.endswith('jpg'):
    print('It is a JPEG image file')

Though there exists multiple ways to execute a particular action, the main agenda of the guidelines laid by PEP 8 is simplicity and readability.

When to Ignore PEP 8

You should never ignore PEP 8. If the guidelines related to PEP8 are followed, you can be confident of writing readable and professional codes. This will also make the lives of your  colleagues and other members working on the same project much easier. 

There are some exclusive instances when you may ignore a particular guideline:

  • After following the guidelines, the code becomes less readable, even for a programmer who is comfortable with reading codes that follow PEP 8.
  • If the surrounding code is inconsistent with PEP.
  • Compatible of code with older version of Python is the priority.

Checking PEP 8 Compliant Code

You can check whether your code actually complies with the rules and regulations of PEP 8 or not. Linters and Autoformatters are two classes of tools used to implement and check PEP 8 compliance.

Linters

It is a program that analyzes your code and detects program errors, syntax errors, bugs and structural problems. They also provide suggestions to correct the errors.

Some of the best linters used for Python code:

  • pycodestyle is a tool to verify the PEP 8 style conventions in your Python code.

You can run the following from the command line to install pycodestyle using pip:

pip install pycodestyle

To display the errors of a program, run pycodestyle in this manner:

pycodestyle my_code.py

my_code.py:1:11: E231 missing whitespace after '{'

my_code.py:3:19: E231 missing whitespace after ')'

my_code.py:4:31: E302 expected 2 blank lines, found 1

  • flake8 is a Python wrapper that verifies PEP 8, pyflakes, and circular complexity.

Type the command to install flake8 using pip:

pip install flake8

Run flake8 from the terminal using the command:

flake8 calc.py 

calc.py:24:3: E111 indentation is not a multiple of two

calc.py:25:3: E111 indentation is not a multiple of two

calc.py:45:9: E225 missing whitespace around operator

You can also use some other good linters like pylintpyflakes, pychecker and mypy.

Autoformatters

An autoformatter is a tool which will format your code to adapt with PEP 8 automatically.One of the most commonly used autoformatter is black.

To install black using pip, type:

pip install black

Remember, you need to have Python 3.6 or above to install black.

An example of code that doesn’t follow PEP 8:

def add(a, b): return a+b

def multiply(a, b):
      return \
        a   * b

Now run black following the filename from the terminal:

black my_code.py

reformatted my_code.py

All done! 

The reformatted code will look like:

def add(a, b):
    return a + b

def multiply(a, b):
    return a * b

Some other autoformatters include autopep8 and yapf. Their work is similar to black.

Conclusion

Since you have now learnt to write a good-quality and readable Python code using PEP 8, you’ll consider it a bliss while working in a project. Though it might be too precise in its nature, it will be useful to everyone working in a particular project by making the code more understandable and making changes and debugging easier.

Let us sum up what we’ve learnt so far:

  • What is PEP 8 and what is its importance.
  • Multiple guidelines for writing PEP 8 compliant code.
  • How to check code against PEP 8 using linters and autoformatters.

If you intend to know more about PEP 8 and its book of guidelines, you can refer to pep8.org or simply enroll for the Python certification course offered by KnowledgeHut.

Priyankur

Priyankur Sarkar

Data Science Enthusiast

Priyankur Sarkar loves to play with data and get insightful results out of it, then turn those data insights and results in business growth. He is an electronics engineer with a versatile experience as an individual contributor and leading teams, and has actively worked towards building Machine Learning capabilities for organizations.

Join the Discussion

Your email address will not be published. Required fields are marked *

1 comments

Ramya 16 Aug 2019

NIce article.

Suggested Blogs

How to Round Numbers in Python

While you are dealing with data, sometimes you may come across a biased dataset. In statistics, bias is whereby the expected value of the results differs from the true underlying quantitative parameter being estimated. Working with such data can be dangerous and can lead you to incorrect conclusions. To learn more about various other concepts of Python, go through our Python Tutorials or enroll to our Python Certification course online.There are many types of biases such as selection bias, reporting bias, sampling bias and so on. Similarly, rounding bias is related to numeric data. In this article we will see:Why is it important to know the ways to round numbersHow to use various strategies to round numbersHow data is affected by rounding itHow to use NumPy arrays and Pandas DataFrames to round numbersLet us first learn about Python’s built-in rounding process.About Python’s Built-in round() FunctionPython Programming offers a built-in round() function which rounds off a number to the given number of digits and makes rounding of numbers easier. The function round() accepts two numeric arguments, n and n digits and then returns the number n after rounding it to ndigits. If the number of digits are not provided for round off, the function rounds off the number n to the nearest integer.Suppose, you want to round off a number, say 4.5. It will be rounded to the nearest whole number which is 5. However, the number 4.74 will be rounded to one decimal place to give 4.7.It is important to quickly and readily round numbers while you are working with floats which have many decimal places. The inbuilt Python function round() makes it simple and easy.Syntaxround(number, number of digits)The parameters in the round() function are:number - number to be roundednumber of digits (Optional) - number of digits up to which the given number is to be rounded.The second parameter is optional. In case, if it is missing then round() function returns:For an integer, 12, it rounds off to 12For a decimal number, if the last digit after the decimal point is >=5 it will round off to the next whole number, and if =5 print(round(5.476, 2))     # when the (ndigit+1)th digit is  1 print(round("x", 2)) TypeError: type str doesn't define __round__ methodAnother example,print(round(1.5)) print(round(2)) print(round(2.5))The output will be:2 2 2The function round() rounds 1.5 up to 2, and 2.5 down to 2. This is not a bug, the round() function behaves this way. In this article you will learn a few other ways to round a number. Let us look at the variety of methods to round a number.Diverse Methods for RoundingThere are many ways to round a number with its own advantages and disadvantages. Here we will learn some of the techniques to rounding a number.TruncationTruncation, as the name means to shorten things. It is one of the simplest methods to round a number which involves truncating a number to a given number of digits. In this method, each digit after a given position is replaced with 0. Let us look into some examples.ValueTruncated ToResult19.345Tens place1019.345Ones place1919.345Tenths place19.319.345Hundredths place19.34The truncate() function can be used for positive as well as negative numbers:>>> truncate(19.5) 19.0 >>> truncate(-2.852, 1) -2.8 >>> truncate(2.825, 2) 2.82The truncate() function can also be used to truncate digits towards the left of the decimal point by passing a negative number.>>> truncate(235.7, -1) 230.0 >>> truncate(-1936.37, -3) -1000.0When a positive number is truncated, we are basically rounding it down. Similarly, when we truncate a negative number, the number is rounded up. Let us look at the various rounding methods.Rounding UpThere is another strategy called “rounding up” where a number is rounded up to a specified number of digits. For example:ValueRound Up ToResult12.345Tens place2018.345Ones place1918.345Tenths place18.418.345Hundredths place18.35The term ceiling is used in mathematics to explain the nearest integer which is greater than or equal to a particular given number. In Python, for “rounding up” we use two functions namely,ceil() function, andmath() functionA non-integer number lies between two consecutive integers. For example, considering a number 5.2, this will lie between 4 and 5. Here, ceiling is the higher endpoint of the interval, whereas floor is the lower one. Therefore, ceiling of 5.2 is 5, and floor of 5.2 is 4. However, the ceiling of 5 is 5.In Python, the function to implement the ceiling function is the math.ceil() function. It always returns the closest integer which is greater than or equal to its input.>>> import math >>> math.ceil(5.2) 6 >>> math.ceil(5) 5 >>> math.ceil(-0.5) 0If you notice you will see that the ceiling of -0.5 is 0, and not -1.Let us look into a short code to implement the “rounding up” strategy using round_up() function:def round_up(n, decimals=0):     multiplier = 10 ** decimals     return math.ceil(n * multiplier) / multiplierLet’s look at how round_up() function works with various inputs:>>> round_up(3.1) 4.0 >>> round_up(3.23, 1) 3.3 >>> round_up(3.543, 2) 3.55You can pass negative values  to decimals, just like we did in truncation.>>> round_up(32.45, -1) 40.0 >>> round_up(3352, -2) 3400You can follow the diagram below to understand round up and round down. Round up to the right and down to the left.Rounding up always rounds a number to the right on the number line, and rounding down always rounds a number to the left on the number line.Rounding DownSimilar to rounding up we have another strategy called rounding down whereValueRounded Down ToResult19.345Tens place1019.345Ones place1919.345Tenths place19.319.345Hundredths place19.34In Python, rounding down can be implemented using a similar algorithm as we truncate or round up. Firstly you will have to shift the decimal point and then round an integer. Lastly shift the decimal point back.math.ceil() is used to round up to the ceiling of the number once the decimal point is shifted. For “rounding down” we first need to round the floor of the number once the decimal point is shifted.>>> math.floor(1.2) 1 >>> math.floor(-0.5) -1Here’s the definition of round_down():def round_down(n, decimals=0):     multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplierThis is quite similar to round_up() function. Here we are using math.floor() instead of math.ceil().>>> round_down(1.5) 1 >>> round_down(1.48, 1) 1.4 >>> round_down(-0.5) -1Rounding a number up or down has extreme effects in a large dataset. After rounding up or down, you can actually remove a lot of precision as well as alter computations.Rounding Half UpThe “rounding half up” strategy rounds every number to the nearest number with the specified precision, and breaks ties by rounding up. Here are some examples:ValueRound Half Up ToResult19.825Tens place1019.825Ones place2019.825Tenths place19.819.825Hundredths place19.83In Python, rounding half up strategy can be implemented by shifting the decimal point to the right by the desired number of places. In this case you will have to determine whether the digit after the shifted decimal point is less than or greater than equal to 5.You can add 0.5 to the value which is shifted and then round it down with the math.floor() function.def round_half_up(n, decimals=0):     multiplier = 10 ** decimals return math.floor(n*multiplier + 0.5) / multiplierIf you notice you might see that round_half_up() looks similar to round_down. The only difference is to add 0.5 after shifting the decimal point so that the result of rounding down matches with the expected value.>>> round_half_up(19.23, 1) 19.2 >>> round_half_up(19.28, 1) 19.3 >>> round_half_up(19.25, 1) 19.3Rounding Half DownIn this method of rounding, it rounds to the nearest number similarly like “rounding half up” method, the difference is that it breaks ties by rounding to the lesser of the two numbers. Here are some examples:ValueRound Half Down ToResult16.825Tens place1716.825Ones place1716.825Tenths place16.816.825Hundredths place16.82In Python, “rounding half down” strategy can be implemented by replacing math.floor() in the round_half_up() function with math.ceil() and then by subtracting 0.5 instead of adding:def round_half_down(n, decimals=0):     multiplier = 10 ** decimals return math.ceil(n*multiplier - 0.5) / multiplierLet us look into some test cases.>>> round_half_down(1.5) 1.0 >>> round_half_down(-1.5) -2.0 >>> round_half_down(2.25, 1) 2.2In general there are no bias for both round_half_up() and round_half_down(). However, rounding of data with more number of ties results in bias. Let us consider an example to understand better.>>> data = [-2.15, 1.45, 4.35, -12.75]Let us compute the mean of these numbers:>>> statistics.mean(data) -2.275Now let us compute the mean on the data after rounding to one decimal place with round_half_up() and round_half_down():>>> rhu_data = [round_half_up(n, 1) for n in data] >>> statistics.mean(rhu_data) -2.2249999999999996 >>> rhd_data = [round_half_down(n, 1) for n in data] >>> statistics.mean(rhd_data) -2.325The round_half_up() function results in a round towards positive infinity bias, and round_half_down() results in a round towards negative infinity bias.Rounding Half Away From ZeroIf you have noticed carefully while going through round_half_up() and round_half_down(), neither of the two is symmetric around zero:>>> round_half_up(1.5) 2.0 >>> round_half_up(-1.5) -1.0 >>> round_half_down(1.5) 1.0 >>> round_half_down(-1.5) -2.0In order to introduce symmetry, you can always round a tie away from zero. The table mentioned below illustrates it clearly:ValueRound Half Away From Zero ToResult16.25Tens place2016.25Ones place1616.25Tenths place16.3-16.25Tens place-20-16.25Ones place-16-16.25Tenths place-16.3The implementation of “rounding half away from zero” strategy on a number n is very simple. All you need to do is start as usual by shifting the decimal point to the right a given number of places and then notice the digit d immediately to the right of the decimal place in this new number. Here, there are four cases to consider:If n is positive and d >= 5, round upIf n is positive and d < 5, round downIf n is negative and d >= 5, round downIf n is negative and d < 5, round upAfter rounding as per the rules mentioned above, you can shift the decimal place back to the left.There is a question which might come to your mind - How do you handle situations where the number of positive and negative ties are drastically different? The answer to this question brings us full circle to the function that deceived us at the beginning of this article: Python’s built-in  round() function.Rounding Half To EvenThere is a way to mitigate rounding bias while you are rounding values in a dataset. You can simply round ties to the nearest even number at the desired precision. Let us look at some examples:ValueRound Half To Even ToResult16.255Tens place2016.255Ones place1616.255Tenths place16.216.255Hundredths place16.26To prove that round() really does round to even, let us try on a few different values:>>> round(4.5) 4 >>> round(3.5) 4 >>> round(1.75, 1) 1.8 >>> round(1.65, 1) 1.6The Decimal ClassThe  decimal module in Python is one of those features of the language which you might not be aware of if you have just started learning Python. Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has a paramount guiding principle – computers must provide an arithmetic that works in the same way as the arithmetic that people learn at school.” – except from the decimal arithmetic specification. Some of the benefits of the decimal module are mentioned below -Exact decimal representation: 0.1 is actually 0.1, and 0.1 + 0.1 + 0.1 - 0.3 returns 0, as expected.Preservation of significant digits: When you add 1.50 and 2.30, the result is 3.80 with the trailing zero maintained to indicate significance.User-alterable precision: The default precision of the decimal module is twenty-eight digits, but this value can be altered by the user to match the problem at hand.Let us see how rounding works in the decimal module.>>> import decimal >>> decimal.getcontext() Context(     prec=28,     rounding=ROUND_HALF_EVEN,     Emin=-999999,     Emax=999999,     capitals=1,     clamp=0,     flags=[],     traps=[         InvalidOperation,         DivisionByZero,         Overflow     ] )The function decimal.getcontext() returns a context object which represents the default context of the decimal module. It also includes the default precision and the default rounding strategy.In the above example, you will see that the default rounding strategy for the decimal module is ROUND_HALF_EVEN. It allows to align with the built-in round() functionLet us create a new Decimal instance by passing a string containing the desired value and declare a number using the decimal module’s Decimal class.>>> from decimal import Decimal >>> Decimal("0.1") Decimal('0.1')You may create a Decimal instance from a floating-point number but in that case, a floating-point representation error will be introduced. For example, this is what happens when you create a Decimal instance from the floating-point number 0.1>>> Decimal(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625')You may create Decimal instances from strings containing the decimal numbers you need in order to maintain exact precision.Rounding a Decimal using the .quantize() method:>>> Decimal("1.85").quantize(Decimal("1.0")) Decimal('1.8')The Decimal("1.0") argument in .quantize() allows to determine the number of decimal places in order to round the number. As 1.0 has one decimal place, the number 1.85 rounds to a single decimal place. Rounding half to even is the default strategy, hence the result is 1.8.Decimal class:>>> Decimal("2.775").quantize(Decimal("1.00")) Decimal('2.78')Decimal module provides another benefit. After performing arithmetic the rounding is taken care of automatically and also the significant digits are preserved.>>> decimal.getcontext().prec = 2 >>> Decimal("2.23") + Decimal("1.12") Decimal('3.4')To change the default rounding strategy, you can set the decimal.getcontect().rounding property to any one of several  flags. The following table summarizes these flags and which rounding strategy they implement:FlagRounding Strategydecimal.ROUND_CEILINGRounding updecimal.ROUND_FLOORRounding downdecimal.ROUND_DOWNTruncationdecimal.ROUND_UPRounding away from zerodecimal.ROUND_HALF_UPRounding half away from zerodecimal.ROUND_HALF_DOWNRounding half towards zerodecimal.ROUND_HALF_EVENRounding half to evendecimal.ROUND_05UPRounding up and rounding towards zeroRounding NumPy ArraysIn Data Science and scientific computation, most of the times we store data as a  NumPy array. One of the most powerful features of NumPy is the use of  vectorization and broadcasting to apply operations to an entire array at once instead of one element at a time.Let’s generate some data by creating a 3×4 NumPy array of pseudo-random numbers:>>> import numpy as np >>> np.random.seed(444) >>> data = np.random.randn(3, 4) >>> data array([[ 0.35743992,  0.3775384 ,  1.38233789,  1.17554883],        [-0.9392757 , -1.14315015, -0.54243951, -0.54870808], [ 0.20851975, 0.21268956, 1.26802054, -0.80730293]])Here, first we seed the np.random module to reproduce the output easily. Then a 3×4 NumPy array of floating-point numbers is created with np.random.randn().Do not forget to install pip3 before executing the code mentioned above. If you are using  Anaconda you are good to go.To round all of the values in the data array, pass data as the argument to the  np.around() function. The desired number of decimal places is set with the decimals keyword argument. In this case, round half to even strategy is used similar to Python’s built-in round() function.To round the data in your array to integers, NumPy offers several options which are mentioned below:numpy.ceil()numpy.floor()numpy.trunc()numpy.rint()The np.ceil() function rounds every value in the array to the nearest integer greater than or equal to the original value:>>> np.ceil(data) array([[ 1.,  1.,  2.,  2.],        [-0., -1., -0., -0.], [ 1., 1., 2., -0.]])Look at the code carefully, we have a new number! Negative zero! Let us now take a look at Pandas library, widely used in Data Science with Python.Rounding Pandas Series and DataFramePandas has been a game-changer for data analytics and data science. The two main data structures in Pandas are Dataframe and Series. Dataframe works like an Excel spreadsheet whereas you can consider Series to be columns in a spreadsheet. Series.round() and DataFrame.round() methods. Let us look at an example.Do not forget to install pip3 before executing the code mentioned above. If you are using  Anaconda you are good to go.>>> import pandas as pd >>> # Re-seed np.random if you closed your REPL since the last example >>> np.random.seed(444) >>> series = pd.Series(np.random.randn(4)) >>> series 0    0.357440 1    0.377538 2    1.382338 3    1.175549 dtype: float64 >>> series.round(2) 0    0.36 1    0.38 2    1.38 3    1.18 dtype: float64 >>> df = pd.DataFrame(np.random.randn(3, 3), columns=["A", "B", "C"]) >>> df           A         B         C 0 -0.939276 -1.143150 -0.542440 1 -0.548708  0.208520  0.212690 2  1.268021 -0.807303 -3.303072 >>> df.round(3)        A      B      C 0 -0.939 -1.143 -0.542 1 -0.549  0.209  0.213 2  1.268 -0.807 -3.303 The DataFrame.round() method can also accept a dictionary or a Series, to specify a different precision for each column. For instance, the following examples show how to round the first column of df to one decimal place, the second to two, and the third to three decimal places: >>> # Specify column-by-column precision with a dictionary >>> df.round({"A": 1, "B": 2, "C": 3})      A     B      C 0 -0.9 -1.14 -0.542 1 -0.5  0.21  0.213 2  1.3 -0.81 -3.303 >>> # Specify column-by-column precision with a Series >>> decimals = pd.Series([1, 2, 3], index=["A", "B", "C"]) >>> df.round(decimals)      A     B      C 0 -0.9 -1.14 -0.542 1 -0.5  0.21  0.213 2  1.3 -0.81 -3.303 If you need more rounding flexibility, you can apply NumPy's floor(), ceil(), and print() functions to Pandas Series and DataFrame objects: >>> np.floor(df)      A    B    C 0 -1.0 -2.0 -1.0 1 -1.0  0.0  0.0 2  1.0 -1.0 -4.0 >>> np.ceil(df)      A    B    C 0 -0.0 -1.0 -0.0 1 -0.0  1.0  1.0 2  2.0 -0.0 -3.0 >>> np.rint(df)      A    B    C 0 -1.0 -1.0 -1.0 1 -1.0  0.0  0.0 2  1.0 -1.0 -3.0 The modified round_half_up() function from the previous section will also work here: >>> round_half_up(df, decimals=2)       A     B     C 0 -0.94 -1.14 -0.54 1 -0.55  0.21  0.21 2 1.27 -0.81 -3.30Best Practices and ApplicationsNow that you have come across most of the rounding techniques, let us learn some of the best practices to make sure we round numbers in the correct way.Generate More Data and Round LaterSuppose you are dealing with a large set of data, storage can be a problem at times. For example, in an industrial oven you would want to measure the temperature every ten seconds accurate to eight decimal places, using a temperature sensor. These readings will help to avoid large fluctuations which may lead to failure of any heating element or components. We can write a Python script to compare the readings and check for large fluctuations.There will be a large number of readings as they are being recorded each and everyday. You may consider to maintain three decimal places of precision. But again, removing too much precision may result in a change in the calculation. However, if you have enough space, you can easily store the entire data at full precision. With less storage, it is always better to store at least two or three decimal places of precision which are required for calculation.In the end, once you are done computing the daily average of the temperature, you may calculate it to the maximum precision available and finally round the result.Currency Exchange and RegulationsWhenever we purchase an item from a particular place, the tax amount paid against the amount of the item depends largely on geographical factors. An item which costs you $2 may cost you less (say $1.8)  if you buy the same item from a different state. It is due to regulations set forth by the local government.In another case, when the minimum unit of currency at the accounting level in a country is smaller than the lowest unit of physical currency, Swedish rounding is done. You can find a list of such rounding methods used by various countries if you look up on the internet.If you want to design any such software for calculating currencies, keep in mind to check the local laws and regulations applicable in your present location.Reduce errorAs you are rounding numbers in a large datasets used in complex computations, your primary concern should be to limit the growth of the error due to rounding.SummaryIn this article we have seen a few methods to round numbers, out of those “rounding half to even” strategy minimizes rounding bias the best. We are lucky to have Python, NumPy, and Pandas already have built-in rounding functions to use this strategy. Here, we have learned about -Several rounding strategies, and how to implement in pure Python.Every rounding strategy inherently introduces a rounding bias, and the “rounding half to even” strategy mitigates this bias well, most of the time.You can round NumPy arrays and Pandas Series and DataFrame objects.If you enjoyed reading this article and found it to be interesting, leave a comment. To learn more about rounding numbers and other features of Python, join our Python certification course.
Rated 5.0/5 based on 43 customer reviews
13213
How to Round Numbers in Python

While you are dealing with data, sometimes you may... Read More

What are Python KeyError Exceptions and How to Handle Them

There are times when you have written your code but while you execute, it might not run. These types of situations occur when the input is inappropriate or you try to open a file with a wrong path or try to divide a number by zero. Due to some errors or incorrect command the output will not be displayed. This is because of errors and exceptions which are a part of the Python programming language. Learn about such concepts and gain further knowledge by joining Python Programming Course.What is Exception Handling?Python raises exceptions when it encounters errors during execution. A Python Exception is basically a construct that signals any important event, such as a run-time error.Exception Handling is the process of responding to executions during computations, which often interrupts the usual flow of executing a program. It can be performed both at the software level as part of the program and also at hardware level using built-in CPU mechanisms.Why is Exception Handling Important?Although exceptions might be irritating when they occur, they play an essential role in high level languages by acting as a friend to the user.An error at the time of execution might lead to two things— either your program will die or will display a blue screen of death. On the other hand, exceptions act as communication tools. It allows the program to answer the questions — what, why and how something goes wrong and then terminates the program in a delicate manner.In simple words, exception handling protects against uncontrollable program failures and increases the potency and efficiency of your code. If you want to master yourself in programming, the knowledge of exceptions and how to handle them is very crucial, especially in Python.What are the Errors and Exceptions in Python?Python doesn’t like errors and exceptions and displays its dissatisfaction by terminating the program abruptly.There are basically two types of errors in the Python language-Syntax Error.Errors occuring at run-time or Exceptions.Syntax ErrorsSyntax Errors, also known as parsing errors, occur when the parser identifies an incorrect statement. In simple words, syntax error occurs when the proper structure or syntax of the programming language is not followed.An example of a syntax error:>>> print( 1 / 0 )) File "", line 1 print( 1 / 0 ))   ^SyntaxError: invalid syntaxExceptionsExceptions occur during run-time. Python raises an exception when your code has a correct syntax but it encounters a run-time issue which it is not able to handle.There are a number of defined built-in exceptions in Python which are used in specific situations. Some of the built-in exceptions are:ExceptionCause Of ErrorArithmeticErrorRaised when numerical computation fails.FloatingPointErrorRaised when floating point calculation fails.AssertionErrorRaised in case of failure of the Assert statement.ZeroDivisionErrorRaised when division or modulo by zero takes place for all numerical values.OverflowErrorRaised when result of an arithmetic operation is very large to be represented.IndexErrorRaised when an index is not found in a sequence.ImportErrorRaised when the imported module is not found.IndentationErrorRaised when indentation is not specified properly.KeyboardInterruptRaised when the user hits interrupt key.RuntimeErrorRaised when a generated error does not fall into any category.SyntaxErrorRaised when there is an error in Python syntax.IOErrorRaised when Python cannot access a file correctly on disk.KeyErrorRaised when a key is not found in a dictionary.ValueErrorRaised when an argument to a function is the right type but not in the right domain.NameErrorRaised when an identifier is not found in the local or global namespace.TypeErrorRaised when an argument to a function is not in the right type.There are another type of built-in exceptions called warnings. They are usually issued in situations where the user is alerted of some conditions. The condition does not raise an exception; rather it  terminates the program.What is a Python KeyError?Before getting into KeyError, you must know the meaning of dictionary and mapping in Python. Dictionary (dict) is an unordered collection of objects which deals with data type key. They are Python’s implementation of data structures and are also known as associative arrays. They comprise key-value pairs, in which each pair maps the key to its associated value.Dictionary is basically a data structure that maps one set of values into another and is the most common mapping in Python.Exception hierarchy of KeyError:->BaseException              ->Exception                         ->LookupError                                       ->KeyErrorA Python KeyError is raised when you try to access an invalid key in a dictionary. In simple terms, when you see a KeyError, it denotes that the key you were looking for could not be found.An example of KeyError:>>> prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} >>> prices['Eraser'] Traceback (most recent call last): File "", line 1, in prices['Eraser'] KeyError: 'Eraser'Here, dictionary prices is declared with the prices of three items. The KeyError is raised when the item ‘Eraser’ is being accessed which is not present in prices.Whenever an exception is raised in Python, it is done using traceback, as you can see in the example code above. It tells why an exception is raised and what caused it.Let’s execute the same Python code from a file. This time, you will be asked to give the name of the item whose price you want to know:# prices.py prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} item = input('Get price of: ') print(f'The price of {item} is {prices[item]}')You will get a traceback again but you’ll also get the information about the line from which the KeyError is raised:Get price of: Eraser Traceback (most recent call last): File "prices.py", line 5, in print(f'The price of {item} is {prices[item]}') KeyError: 'Eraser'The traceback in the example above provides the following information:A KeyError was raised.The key ‘Eraser’ was not found.The line number which raised the exception along with that line.Where else will you find a Python KeyError?Although most of the time, a KeyError is raised because of an invalid key in a Python dictionary or a dictionary subclass, you may also find it in other places in the Python Standard Library, such as in a zipfile. However, it denotes the same semantic meaning of the Python KeyError, which is not finding the requested key.An example of such:>>> from zipfile import ZipFile >>> my_zip_file = ZipFile('Avengers.zip') >>> my_zip_file.getinfo('Batman')Traceback (most recent call last): File "", line 1, in File "myzip.py", line 1119, in getinfo 'There is no item named %r in the archive' % name) KeyError: "There is no item named 'Batman' in the archive"In this example, the zipfile.ZipFile class is used to derive information about a ZIP archive ‘Batman’ using the getinfo() function. Here, the traceback indicates that the problem is not in your code but in the zipfile code, by showing the line which caused the problem. The exception raised here is not because of a LookUpError but rather due to the zipfile.ZipFile.getinfo()function call.When do you need to raise a Python KeyError?In Python Programming, it might be sensible at times to forcefully raise exceptions in your own code. You can usually raise an exception using the raise keyword and by calling the KeyError exception:>>> raise KeyError('Batman')Here, ‘Batman’ acts as the missing key. However, in most cases, you should provide more information about the missing key so that your next developer has a clear understanding of the problem.Conditions to raise a Python KeyError in your code:It should match the generic meaning behind the exception.A message should be displayed about the missing key along with the missing key which needs to be accessed.How to Handle a Python KeyError?The main motive of handling a Python KeyError is to stop unexpected KeyError exceptions to be raised. There are a number of number of ways of handling a KeyError exception.Using get()The get()is useful in cases where the exception is raised due to a failed dictionary LookupError. It returns either the specified key value or a default value.# prices.py prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} item = input('Get price of: ') price = prices.get(item) if price:   print(f'The price of {item} is {prices[item]}')   else:   print(f'The price of {item} is not known')This time, you’ll not get a KeyError because the get() uses a better and safer method to retrieve the price and if not found, the default value is displayed:Get price of: EraserThe price of Eraser is not knownIn this example, the variable price will either have the price of the item in the dictionary or the default value ( which is None by default ).In the example above, when the key ‘Eraser’ is not found in the dictionary, the get() returns  None by default rather than raising a KeyError. You can also give another default value as a second argument by calling get():price = prices.get(item,0)If the key is not found, it will return 0 instead of None.Checking for KeysIn some situations, the get() might not provide the correct information. If it returns None, it will mean that the key was not found or the value of the key in Python Dictionary is actually None, which might not be true in some cases. In such situations, you need to determine the existence of a key in the dictionary. You can use the if and in operator to handle such cases. It checks whether a key is present in the mapping or not by returning a boolean (True or False) value:dict = dictionary() for i in range(50):   key = i % 10     if key in dict: dict[key] += 1 else: dict[key] = 1In this case, we do not check what the value of the missing key is but rather we check whether the key is in the dictionary or not. This is a special way of handling an exception which is used rarely.This technique of handling exceptions is known as Look Before You Leap(LBYL).Using try-exceptThe try-except block is one of the best possible ways to handle the KeyError exceptions. It is also useful where the get() and the if and in operators are not supported.Let’s apply the try-except block on our earlier retrieval of prices code:# prices.py prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} item = input('Get price of: ') try: print(f'The price of {item} is {prices[item]}') except KeyError: print(f'The price of {item} is not known')Here, in this example there are two cases— normal case and a backup case. try block corresponds to the normal case and except block to the backup case. If the normal case doesn’t print the name of the item and the price and raises a KeyError, the backup case prints a different statement or a message.Using try-except-elseThis is another way of handling exceptions. The try-except-else  has three blocks— try block, except block and else block.The else condition in a try-except statement is useful when the try condition doesn’t raise an exception. However, it must follow all the except conditions.Let us take our previous price retrieval code to illustrate try-except-else:# prices.py prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} item = input('Get price of:') try: print(f'The price of {item} is {prices[item]}') except KeyError: print(f'The price of {item} is not known') else: print(f'There is no error in the statement')First, we access an existing key in the try-except block. If the Keyerror is not raised, there are no errors. Then the else condition is executed and the statement is displayed on the screen.Using finallyThe try statement in Python can have an optional finally condition. It is used to define clean-up actions and is always executed irrespective of anything. It is generally used to release external sources.An example to show finally:# prices.py prices = { 'Pen' : 10, 'Pencil' : 5, 'Notebook' : 25} item = input('Get price of: ') try: print(f'The price of {item} is {prices[item]}') except KeyError: print(f'The price of {item} is not known') finally: print(f'The finally statement is executed')Remember, the finally statement will always be executed whether an exception has occurred or not.How to raise Custom Exceptions in Python?Python comprises of a number of built-in exceptions which you can use in your program. However, when you’re developing your own packages, you might need to create your own custom exceptions to increase the flexibility of your program.You can create a custom Python exception using the pre-defined class Exception:def square(x): if x
Rated 4.5/5 based on 1 customer reviews
7930
What are Python KeyError Exceptions and How to Han...

There are times when you have written your code bu... Read More

How to Work With a PDF in Python

Whether it is an ebook, digitally signed agreements, password protected documents, or scanned documents such as passports, the most preferred file format is PDF or Portable Document Format. It was originally developed by Adobe and is a file format used to present and transfer documents easily and reliably. It uses the file extension .pdf. In fact, PDF being the most widely used digital media, is now considered as an open standard which is maintained by the International Standards Organization (ISO). Python has relatively easy syntax which makes it even easier for the ones who are in their initial stage of learning the language. The popular Python libraries are well suited and integrated which allows to easily extract documents from a PDF, rotate pages if required, split pdf to make separate documents, or add watermarks in them.Now an important question rises, why do we need Python to process PDFs? Well, processing a PDF falls under the category of text analytics. There are several libraries and frameworks available which are designed in Python exclusively for text analytics. This makes it easier to play with a PDF in Python. You can also extract information from PDF and use into Natural Language Processing or any other Machine Learning models. Get certified and learn more about Python Programming and apply those skills and knowledge in the real world.History of  pyPDF, PyPDF2, pyPDF4The first PyPDF package was released in 2005 and the last official release in 2010. After a year or so, a  company named Phasit sponsored a branch of the PyPDF called PyPDF2 which was consistent with the original package and worked pretty well for several years.A series of packages were released later on with the name of PyPDF3 and later renamed as PyPDF4. The biggest difference between PyPDF and the other versions was that the later versions supported Python3. PyPDF2 has been discarded recently. But since PyPDF4 is not fully backward compatible with the PyPDf2, it is suggested to use PyPDF2. You can also use a substitute package - pdfrw. Pdfrw was created by Patrick Maupin and allows you to perform all functions which PyPDF2 is capable of except a few such as encryption, decryption, and types of decompression.Some common libraries in PythonLet us look into some of the libraries Python offers to handle PDFs:PdfMiner It is a tool used to extract information from PDF documents. PDFMiner allows the user to analyze text data and obtain the definite location of a text. It provides information such as fonts and lines. We can also use it as a PDF transformer and a PDF parser.PyPDF2PyPDF2 is purely a Python library which allows users to split, merge, crop, encrypt, and transform PDFs. You can also add customized data, view options, and passwords to the documents. Tabula-pyIt is a Python wrapper of tabula-java which can read tables from PDF files and convert into Pandas Dataframe or into CSV/TSV/JSON file formats.SlateIt is a Python package which facilitates the extraction of information and is dependent on the PdfMiner package.PDFQueryA light Python wrapper which uses minimum code to extract data from PDFs.xPDFIt is an open source viewer of PDF which also includes an extractor, converter and other utilities. Out of all the libraries mentioned above, PyPDF2 is the most used to perform operations like extraction, merging, splitting and so on.Installing PyPDF2If you're using Anaconda, you can install PyPDF2 using pip or conda. To install PyPDF2 using pip, run the following command in the command line:pip install PyPDF2The module is case-sensitive. So you need to make sure that proper syntax is followed. The installation is really quick since PyPDF2 is free of dependencies.Extracting Document Information from a PDF in PythonPyPDF2 can be used to extract metadata and all sorts of texts from PDF when you are performing operations on preexisting PDF files. The types of data you can extract are:AuthorCreatorProducerSubjectTitleNumber of PagesTo understand it better, let us use an existing PDF in your system or you can go to Leanpub and download a book sample.The code for extracting the document information from the PDF—# get_doc_info.py from PyPDF2 import PdfFileReader def getinfo(path):     with open(path, 'rb') as f:         PDF = PdfFileReader(f)         information = PDF.getDocumentInfo()         numberofpages = PDF.getNumPages()     print(information)     author = information.author     creator = information.creator     producer =information .producer     subject = information.subject     title = information.title if __name__ == '__main__':     path = 'reportlab-sample.pdf'     getinfo(path)The output of the program above will look like—Here, we have firstly imported PdfFileReader from the PyPDF2 package. The class PdfFileReader is used to interact with PDF files like reading and extracting information using accessor methods. Then, we have created our own function getinfo with a PDF file as an argument and then called the getdocumentinfo(). This returned an instance of DocumentInformation. And finally we got extract information like the author, creator, subject or title, etc.getNumPages() is used to count the number of pages in the document. PdfMiner can be used when you want to extract text from a PDF file. It is potent and particularly designed for extracting text from PDF.We have learned to extract information from PDF. Now let’s learn how to rotate a PDF. Rotating pages in PDFA lot of times we receive PDFs which contain pages in landscape orientation instead of portrait. You may also find certain documents to be upside down, which happens while scanning a document or mailing. However, we can rotate the pages clockwise or counterclockwise according to our choice using Python with PyPDF2.The code for rotating the article is as follows—# rotate_pages.py from PyPDF2 import PdfFileReader, PdfFileWriter def rotate(pdf_path):     pdf_write = PdfFileWriter()     pdf_read = PdfFileReader(path)     # Rotate page 90 degrees to the right     page1 = pdf_read.getPage(0).rotateClockwise(90)     pdf_write.addPage(page1)     # Rotate page 90 degrees to the left     page2 = pdf_read.getPage(1).rotateCounterClockwise(90)     pdf_write.addPage(page2)     # Add a page in normal orientation     pdf_write.addPage(pdf_read.getPage(2))     with open('rotate_pages.pdf', 'wb') as fh:         pdf_write.write(fh) if __name__ == '__main__':     path = 'mldocument.pdf'     rotate(path)The output of the code will be as follows—Here firstly we imported the PdfFileReader and the PdfFileWriter so that we can write out a new PDF file. Then we declared a function rotate with a path to the PDF that is to be modified. Within the function, we created a read object pdf_read and write object pdf_write.Then, we used the getPage() to grab the pages. Two pages page1 and page2 are taken and rotated to 90 degrees clockwise and 90 degrees counterclockwise respectively using rotateClockwise() and rotateCounterClockwise().We used addPage() function after each rotation method calls. This adds the rotated page to the write object. The last page we add is page3 without any rotation.Lastly, we have used write() with a file-like parameter to write out the new PDF. The final PDF contains three pages, the first two will be in the landscape mode and rotated in reversed direction and the third page will be in normal orientation.Now we will learn to merge different PDFs into one.Merging PDFsIn many cases, we need to merge two PDFs into a single one. For example, suppose you are working on a project report and you need to print it and bind it into a book. It contains a cover page followed by the project report. So you have two different PDFs and you want to merge them into one PDF. You can simply use Python to do so. Let us see how can we merge PDFs into one.The code for merging two PDF documents using PyPDF in mentioned below:# pdf_merging.py from PyPDF2 import PdfFileReader, PdfFileWriter def pdfmerger(paths, output):     pdfwrite = PdfFileWriter()     for path in paths:         pdfread = PdfFileReader(path)         for page in range(pdfread.getNumPages()):             # Add each page to the writer object             pdfwrite.addPage(pdfread.getPage(page))     # Write out the merged PDF     with open(output, 'wb') as out:         pdfwrite.write(out) if __name__ == '__main__':     paths = ['document-1.pdf', 'document-2.pdf']     pdfmerger(paths, output='merged.pdf')Here we have created a function pdfmerger() which takes a number of inputs and a single output. Then we created a PdfFileReader() object for each PDF path and looped over the pages, added each page to the write object. Finally, using the write() function the object’s contents are written to the disk.PyPDF2 makes the process of merging simpler by creating the PdfFileMerger class.Code for merging two documents using PyPDF2—# pdf_merger2.py import glob from PyPDF2 import PdfFileMerger def merger(output_path, input_paths):     pdfmerge = PdfFileMerger()     file_handles = []     for path in input_paths:         pdfmerge.append(path)     with open(output_path, 'wb') as fileobj:         pdfmerge.write(fileobj) if __name__ == '__main__':     paths = glob.glob('d-1.pdf')     paths.sort()     merger('d-2.pdf', paths)The PyPDF2 makes it simpler in the way that we don’t need to loop the pages of each document ourselves.  Here, we created the object pdfmerge and looped through the PDF paths. The PyPDF2 automatically appends the whole document. Finally, we write it out.Let’s perform the opposite of merging now!Splitting PDFsThe PyPDF2 package has the ability to split up a single PDF into multiple PDFs. It allows us to split pages into different PDFs. Suppose we have a set of scanned documents in a single PDF and we need to separate the pages into different PDFs as per requirement, we can simply use Python to select pages we want to split and get the work done.Code for splitting a single PDF into multiple PDFs—# pdf_splitter.py import os from PyPDF2 import PdfFileReader, PdfFileWriter def splitpdf(path):     fname = os.path.splitext(os.path.basename(path))[0]     pdf = PdfFileReader(path)     for page in range(pdf.getNumPages()):         pdfwrite = PdfFileWriter()         pdfwrite.addPage(pdf.getPage(page))         outputfilename = '{}_page_{}.pdf'.format(             fname, page+1)         with open(outputfilename, 'wb') as out:             pdfwrite.write(out)         print('Created: {}'.format(outputfilename)) if __name__ == '__main__':     path = 'document-1.pdf'     splitpdf(path)Here we have imported the PdfFileReader and PdfFileWriter from PyPDF2. Then we created a function called splitpdf() which accepts the path of PDF we want to split. The first line of the function takes the name of the input file. Then we open the PDF and create a read object. Using the read object’s getNumPages(), we loop over all the pages.In the next step, we created an instance of PdfFileWriter inside the for loop. Then, we created a PDF write instance and added each page to it for each of the pages in the PDF input. We also created a unique filename using the original filename + the word ‘page’ + the page number + 1.Once we are done with running the script, we will have each of the pages of the input PDF split into multiple PDFs. Now let us learn how to add a watermark to a PDF and keep it secured.Adding Overlays/WatermarksAn image or superimposed text on selected pages in a PDF document is referred to as a Watermark. The Watermark adds security features and protects our rational property like images and PDFs. Watermarks are also called overlays.The PyPDF2 allows us to watermark documents. We just need to have a PDF which will consist of our watermark text, image or signature.Code for adding a watermark in a PDF—# watermarker.py from PyPDF2 import PdfFileWriter, PdfFileReader def watermark(inputpdf, outputpdf, watermarkpdf):     watermark = PdfFileReader(watermarkpdf)     watermarkpage = watermark.getPage(0)     pdf = PdfFileReader(inputpdf)     pdfwrite = PdfFileWriter()     for page in range(pdf.getNumPages()):         pdfpage = pdf.getPage(page)         pdfpage.mergePage(watermarkpage)         pdfwrite.addPage(pdfpage)     with open(outputpdf, 'wb') as fh:         pdfwrite.write(fh) if __name__ == '__main__':     watermark(inputpdf='document-1.pdf',               outputpdf='watermarked_w9.pdf',               watermarkpdf='watermark.pdf')The output of the code will look like— There are three arguments of the function watermark(): inputpdf: The path of the PDF that is to be watermarked. outputpdf: The path where the watermarked PDF will be saved. watermarkpdf: The PDF which contains the watermark.Firstly, we extract the PDF page which contains the watermark image or text and then open that PDF page where we want to give the desired watermark.Using the inputpdf, we create a read object and using the pdfwrite, we create a write object to write out the watermarked PDF and then iterate over the pages.Next, we call the page object’s mergePage and apply the watermark and add that to the write object pdfwrite.When the loop terminates, the watermarked PDF is written out to the disk and it’s done!Encrypting a PDFIn the PDF world, the PyPDF2 package allows an owner password which gives the user the advantage to work as an administrator. The package also provides the user password which allows us to open the document upon entering the password.The PyPDF2 basically doesn’t permit any allowances on any PDF file yet it allows the user to set the owner password and user password.Code to add a password and add encryption to a PDF—# pdf_encrypt.py from PyPDF2 import PdfFileWriter, PdfFileReader def encryption(inputpdf, outputpdf, password):     pdfwrite = PdfFileWriter()     pdfread = PdfFileReader(inputpdf)     for page in range(pdfread.getNumPages()):         pdfwrite.addPage(pdfread.getPage(page))     pdfwrite.encrypt(user_pwd=password, owner_pwd=None,                       use_128bit=True)     with open(outputpdf, 'wb') as fh:         pdfwrite.write(fh) if __name__ == '__main__':     encryption(inputpdf='document-1.pdf',                   outputpdf='document-1-encrypted.pdf',                   password='twofish')We declare a  function named encryption() with three arguments—the input PDF path, the output PDF path and the password that we want to keep. Then we create one read object pdfread and one write object pdfwrite. Now we loop over all the pages and add them to the write object since we need to encrypt the entire document.Finally, we call the encrypt() function which accepts three parameters—the user password, the owner password and the whether or not to use 128-bit encryption. The PDF  will be encrypted to 40-bit encryption if the argument use128bit is set to false. Also if the owner password is set to none, then it will be set to user password automatically.Reading the Table data from PDFSuppose you want to work with the Table data in Pdf, you can use tabula-py to read tables in a PDF. To install tabula-py, run:pip install tabula-pyCode to extract simple Text from pdf using PyPDF2:import tabula # readinf the PDF file that contain Table Data # you can find the pdf file with complete code in below # read_pdf will save the pdf table into Pandas Dataframe df = tabula.read_pdf("document.pdf") # in order to print first 5 lines of Table df.head()If you PDF file contains Multiple Tabledf = tabula.read_pdf("document.pdf",multiple_tables=True)If you want to extract Information from the specific part of any specific page of PDFtabula.read_pdf("document.pdf", area=(126,149,212,462), pages=1)If you want the output into JSON Formattabula.read_pdf("offense.pdf", output_format="json")Exporting PDF into ExcelSuppose you want to export a PDF into Excel, you can do so by writing the following code and convert the PDF Data into Excel or CSV.tabula.convert_into("document.pdf", "document_testing.xlsx", output_format="xlsx")Let us sum up what we have learned in the article:Extraction of data from a PDFRotate pages in a PDFMerge PDFs into one PDFSplit a PDF into many PDFsAdd watermarks or overlays in a PDFAdd password or encryption to a PDFReading table from PDFExporting PDF into Excel or CSVAs you have seen, PyPDF2 is one of the most useful tools available in Python. The features of PyPDF2 makes life easier whether you are working on a large project or even when you quickly want to make some changes to your PDF documents. Learn more about such libraries and frameworks as KnowledgeHut offers Python Certification Course for Programmers, Developers, Jr./Sr Software Engineers/Developers and anybody who wants to learn Python.
Rated 4.5/5 based on 1 customer reviews
8019
How to Work With a PDF in Python

Whether it is an ebook, digitally signed agreement... Read More

20% Discount