Search

DevOps Filter

How to Become a DevOps Engineer

Who is DevOps engineer?        DevOps engineers are a group of influential individuals who encapsulates depth of knowledge and years of hands-on experience around a wide variety of open source technologies and tools. They come with core attributes which involve an ability to code and script, data management skills as well as a strong focus on business outcomes. They are rightly called “Special Forces” who hold core attributes around collaboration, open communication and reaching across functional borders.DevOps engineer always shows interest and comfort working with frequent, incremental code testing and deployment. With a strong grasp of automation tools, these individuals are expected to move the business quicker and forward, at the same time giving a stronger technology advantage. In nutshell, a DevOps engineer must have a solid interest in scripting and coding,  skill in taking care of deployment automation, framework computerization and capacity to deal with the version control system.Qualities of a DevOps Engineer Collated below are the characteristics/attributes of the DevOps Engineer.Experience in a wide range of open source tools and techniquesA Broad knowledge on Sysadmin and Ops rolesExpertise in software coding, testing, and deploymentExperiences on DevOps Automation tools like Ansible, Puppet, and ChefExperience in Continuous Integration, Delivery & DeploymentIndustry-wide experience in implementation of  DevOps solutions for team collaborationsA firm knowledge of the various computer programming languagesGood awareness in Agile Methodology of Project ManagementA Forward-thinker with an ability to connect the technical and business goals     Demand for people with DevOps skills is growing rapidly because businesses get great results from DevOps. Organizations using DevOps practices are overwhelmingly high-functioning: They deploy code up to 30 times more frequently than their competitors, and 50 percent fewer of their deployments fail.What exactly DevOps Engineer do?DevOps is not a way to get developers doing operational tasks so that you can get rid of the operations team and vice versa.  Rather it is a way of working that encourages the Development and Operations teams to work together in a highly collaborative way towards the same goal. In nutshell, DevOps integrates developers and operations team to improve collaboration and productivity.The main goal of DevOps is not only to increase the product’s quality to a greater extent but also to increase the collaboration of Dev and Ops team as well so that the workflow within the organization becomes smoother & efficient at the same time.DevOps Engineer has an end-to-end responsibility of the Application (Software) right from gathering the requirement to development, to testing, to infrastructure deployment, to application deployment and finally monitoring & gathering feedback from the end users, then again implementing the changes. These engineers spend more time researching new technologies that will improve efficiency and effectiveness.They Implement highly scalable applications and integrate infrastructure builds with application deployment processes. Let us spend some time in understanding the list of most important DevOps Engineers’ roles and responsibilities.1) The first and foremost critical role of a DevOps Engineer is to be an effective communicator i.e Soft Skills. A DevOps Engineer is required to be a bridge between the silos and bring different teams together to work towards a common goal. Hence, you can think of DevOps Engineers as “IT Project Managers”. They typically work on a DevOps team with other professionals in a similar role, each managing their own piece of the infrastructure puzzle.2) The second critical role of DevOps Engineer is to be Expert Collaborators. This is because their role requires them to build upon the work of their counterparts on the development and IT teams to scale cloud programs, create workflow processes, assign tenants and more.3) Thirdly, they can be rightly called “Mentors” as they spend most of the time in mentoring and educating software developers and architecture teams within an organization on how to create software that is easily scalable. They also collaborate with IT and security teams to ensure quality releases.Next, they need to be a “customer-service oriented” individuals. The DevOps Engineer is a customer-service oriented, team player who can emerge from a number of different work and educational backgrounds, but through their experience has developed the right skillset to move into DevOps.The DevOps Engineer is an important IT team member because they work with an internal customer. This includes QC personnel, software and application developers, project managers and project stakeholders usually from within the same organization. Even though they rarely work with external customers or end-users, but they keep close eye on  a “customer first” mindset to satisfy the needs of their internal clients.Not to miss out, DevOps engineer holds broad knowledge and experience with Infrastructure automation tools. A key element of DevOps is automation.  A lot of the manual tasks performed by the more traditional system administrator and engineering roles can be automated by using scripting languages like Python, Ruby, Bash, Shell, Node.js. This ensures a consistent performance of manual tasks by removing the human component and allowing teams to spend the saved time on more of the broader goals of the team and company.Hence, a DevOps engineer must possess the ability to implement automation technologies and tools at any level, from requirements to development to testing and operations.Few of other responsibilities of DevOps Engineer include -Manage and maintain infrastructure systemMaintaining and developing highly automated services landscape and open source servicesTake over the ownership for integral components of technology and make sure it grows aligned with company successScale systems and ensure the availability of services with developers on changes to the infrastructure required by new features and products.How to become a DevOps engineer?DevOps is less about doing things a particular way, and more about moving the business forward and giving it a stronger technological advantage. There is not a single cookbook or path to become a DevOps professional. It's a continuous learning and consulting process. Every DevOps tasks have been originated from various development, testing, ops team consulting through consultants and running pilots, therefore it’s hard to give a generic playbook for how to get it implemented. Everyone should start with learning about the values, principles, methods, and practices of DevOps and trying to share it via any channel and keep learning.Here’s my 10 golden tips to become a DevOps Engineer:    1.  Develop Your Personal Brand with Community Involvement    2. Get familiar with IaC(Infrastructure-as-Code) - CM    3. Understand DevOps Principles & Frameworks    4. Demonstrate Curiosity & Empathy    5. Get certified on Container Technologies - Docker | Kubernetes| Cloud    6. Get Expert in Public | Private | Hybrid Cloud offering    7. Become an Operations Expert before you even THINK DevOps    8. Get Hands-on with various Linux Distros & Tools    9. Arm Yourself with CI-CD, Automation & Monitoring Tools(Github, Jenkins, Puppet, Ansible etc)    10.Start with Process Re-Engineering and Cross-collaboration within your teams.Skills that DevOps engineer need to have If you’re aiming to land a job as a DevOps engineer in 2018, it’s not only about having a deep specialized skill but understanding how a variety of technologies and skills come together. One of the things that makes DevOps both challenging to break into is that you need to be able to write code, and also to work across and integrate different systems and applications. Based on my experience, I have finalized on the list of top 5 skill sets  which you might require to be a successful DevOps engineer:#1 - SysAdmin with Virtualization ExperienceDeployment is a major requirement in devops role and ops engineer are good at that, All is needed is a deployments automation engine(chef, puppet, ansible) knowledge and its use-cases implementations. Nowadays, most of public clouds are running multiple flavors of virtualization so a must have 3 – 5 years of virtualization experience with VMware, KVM, Xen, Hyper-V is required along.#2 - Solution Architect RoleAlong with deployments or virtualization experience, understanding and implementation of all the hardware technologies in breadth is a must like storage and networking. Nowadays there is a very high-demand for people who can design a solution that scales and performs with high availability and uptime with minimal amount of resources to feed on (Max utilization).#3 - A Passionate Programmer/API ExpertiseBash, Powershell, Perl, Ruby, JavaScript, Go, Python etc are few of popular scripting languages one need to have expertise on to become an effective DevOps Engineer. A DevOps engineer must be able to write code to automated repeatable processes. One need to be familiar with RESTFUL APIs.#4 - Integration Skillset around CI-CD toolA DevOps engineer should be able to use all his expertise to integrate all the open source tools and techniques to create an environment that is fully automated and integrated. The goal should be for zero manual intervention from source code management to deployment state, i.e. Continuous Integration, Continuous Delivery and Continuous Deployment.#5 - Bigger Picture & Customer FocusWhile the strong focus on coding chops makes software engineering a natural path to a career in DevOps, the challenge for candidates who are coming from this world is that they need to be able to prove that they can look outside their immediate team and project. DevOps engineers are responsible for facilitating collaboration and communication between the Development and IT teams within an organization, so to succeed in an interview, you’ll need to be able to demonstrate your understanding of how disparate parts of the technical organization fit and work together.In nutshell, all you need are the list of tools and technologies listed below -Source Control (like Git, Bitbucket, Svn, VSTS etc)Continuous Integration (like Jenkins, Bamboo, VSTS )Infrastructure Automation (like Puppet, Chef, Ansible)Deployment Automation & Orchestration (like Jenkins, VSTS, Octopus Deploy)Container Concepts (LXD, Docker)Orchestration (Kubernetes, Mesos, Swarm)Cloud (like AWS, Azure, Google Cloud, Openstack)What are DevOps certifications available in the market? Are they really useful?In 2018, DevOps professionals are in huge demand. The demand for DevOps professionals in the current IT marketplace has increased exponentially over the years. A certification in DevOps is a complete win-win scenario, with both the individual professional and the organization as a whole standing to gain from its implementation. Completing a certification in the same will not only provide added value to one’s profile as an IT specialist but also advance career prospects faster than would usually be possible.The certifications related to DevOps are categorized into         1)  Foundation,         2) Certified Agile Process Owner &         3) Certified Agile Service ManagerThe introductory DevOps Certification is Foundation and certified individuals are able to execute the concepts and best practices of DevOps and enhance workflow and communication in the enterprise.Yes, these DevOps  certifications hold numerous benefits in the following ways:1. Better Job OpportunitiesDevOps is a relatively new idea in the IT domain with more businesses looking at employing DevOps processes and practices. There is a major gap between the demand for DevOps Certified professionals and the availability of the required DevOps professionals. IT professionals can take advantage of this huge deficit in highly skilled professionals by taking up a certification in DevOps for validation of DevOps skill set. This will ensure and guarantee much better job options.2. Improved Skills & KnowledgeThe core concept of DevOps revolves around brand new decision-making methods and thought processes. DevOps comes with a host of technical and business benefits which upon learning can be implemented in an enterprise. The fundamentals of DevOps consist of professionals working in teams of a cross-functional nature. Such teams consist of multi-disciplinary professionals ranging from business analysts, QA professionals, Operation Engineers, and Developers.3. Handsome SalaryRapid penetration of DevOps best practices in organizations and their implementation in the mentioned organizations is seeing massive hikes in the pay of DevOps professionals.This trend is seen to be consistent and sustainable according to industry experts the world over. DevOps professionals are the highest paid in the IT industry.4. Increased Productivity & EffectivenessConventional IT workplaces see employees and staff being affected by downtime which can be attributed to waiting for other employees or staff and other software and software related issues. The main objective of an IT professional at the workplace would be to be productive for a larger part of the time he/she will spend at the workplace. This can be achieved by minimizing the time spent waiting for other employees or software products and eliminating the unproductive and unsatisfying part of the work process. This will boost the effectiveness of the work done and will add greatly to the value of the enterprise and the staff as well.If you are looking out for the “official” certification programs for DevOps, below are some of the useful links:1) AWS Certified DevOps Engineer - Professional2) Azure certifications | Microsoft3) Google Cloud Certifications4) Chef Certification5) Red Hat Certificate of Expertise in Ansible Automation6) Certification - SaltStack7) Puppet certification8) Jenkins Certification9) NGINX University10) Docker - Certification11) Kubernetes Certified Administrator12) Kubernetes Certified Application Developer13) Splunk | Education Programs14) Certifications | AppDynamics15) New Relic University Certification Center16) Elasticsearch Certification Programme17)SAFe DevOps courseDevOps engineer examBelow are the list of popular DevOps Engineer exams and certifications details -DevOps Exam Syllabus Training Duration Minimal Attempts Exam Re-Take InformationAWS Certified DevOps EngineeAWS_certified_devops_engineer_professional_blueprint.pdf3 MonthsNo Minimal RequirementWaiting Period: 14 days before they are eligible to retake the exam.No limit on exam attempts until the test taker has passedRHCA certification with a DevOpsRED HAT CERTIFIED3 Days for each trainingRed Hat Certificate ofWaiting Period: 1 weekconcentrationARCHITECT: DEVOPScourse Expertise in Platform-as-a-Service Red Hat Certificate of Expertise in Atomic Host Container AdministrationRed Hat Certificate of Expertise in Containerized Application Development Red Hat Certificate of Expertise in Ansible AutomationRed Hat Certificate of Expertise in Configuration ManagementDocker Certification Associate ExamDCA ExamNo Minimal AttemptsWait 14 days from the day you fail to take the exam againCertified Kubernetes Associate ExamCKA Exam4-5 WeeksNo Minimal AttemptsWait 14 days from the day you fail to take the exam againChef Certification ExamChef Cert Exam8 HoursLinkMinimal 1 week time

How to Become a DevOps Engineer

4217
  How to Become a DevOps Engineer

Who is DevOps engineer? 
       
DevOps engineers are a group of influential individuals who encapsulates depth of knowledge and years of hands-on experience around a wide variety of open source technologies and tools. They come with core attributes which involve an ability to code and script, data management skills as well as a strong focus on business outcomes. They are rightly called “Special Forces” who hold core attributes around collaboration, open communication and reaching across functional borders.

DevOps engineer always shows interest and comfort working with frequent, incremental code testing and deployment. With a strong grasp of automation tools, these individuals are expected to move the business quicker and forward, at the same time giving a stronger technology advantage. In nutshell, a DevOps engineer must have a solid interest in scripting and coding,  skill in taking care of deployment automation, framework computerization and capacity to deal with the version control system.


Qualities of a DevOps Engineer 

Collated below are the characteristics/attributes of the DevOps Engineer.

  • Experience in a wide range of open source tools and techniques
  • A Broad knowledge on Sysadmin and Ops roles
  • Expertise in software coding, testing, and deployment
  • Experiences on DevOps Automation tools like Ansible, Puppet, and Chef
  • Experience in Continuous Integration, Delivery & Deployment
  • Industry-wide experience in implementation of  DevOps solutions for team collaborations
  • A firm knowledge of the various computer programming languages
  • Good awareness in Agile Methodology of Project Management
  • A Forward-thinker with an ability to connect the technical and business goals     
  • Demand for people with DevOps skills is growing rapidly because businesses get great results from DevOps. Organizations using DevOps practices are overwhelmingly high-functioning: They deploy code up to 30 times more frequently than their competitors, and 50 percent fewer of their deployments fail.

What exactly DevOps Engineer do?

DevOps is not a way to get developers doing operational tasks so that you can get rid of the operations team and vice versa.  Rather it is a way of working that encourages the Development and Operations teams to work together in a highly collaborative way towards the same goal. In nutshell, DevOps integrates developers and operations team to improve collaboration and productivity.

The main goal of DevOps is not only to increase the product’s quality to a greater extent but also to increase the collaboration of Dev and Ops team as well so that the workflow within the organization becomes smoother & efficient at the same time.

Duties of Developing and Operations team
DevOps Engineer has an end-to-end responsibility of the Application (Software) right from gathering the requirement to development, to testing, to infrastructure deployment, to application deployment and finally monitoring & gathering feedback from the end users, then again implementing the changes. These engineers spend more time researching new technologies that will improve efficiency and effectiveness.They Implement highly scalable applications and integrate infrastructure builds with application deployment processes.

 Let us spend some time in understanding the list of most important DevOps Engineers’ roles and responsibilities.

1) The first and foremost critical role of a DevOps Engineer is to be an effective communicator i.e Soft Skills. A DevOps Engineer is required to be a bridge between the silos and bring different teams together to work towards a common goal. Hence, you can think of DevOps Engineers as “IT Project Managers”. They typically work on a DevOps team with other professionals in a similar role, each managing their own piece of the infrastructure puzzle.

2) The second critical role of DevOps Engineer is to be Expert Collaborators. This is because their role requires them to build upon the work of their counterparts on the development and IT teams to scale cloud programs, create workflow processes, assign tenants and more.

3) Thirdly, they can be rightly called “Mentors” as they spend most of the time in mentoring and educating software developers and architecture teams within an organization on how to create software that is easily scalable. They also collaborate with IT and security teams to ensure quality releases.

Next, they need to be a “customer-service oriented” individuals. The DevOps Engineer is a customer-service oriented, team player who can emerge from a number of different work and educational backgrounds, but through their experience has developed the right skillset to move into DevOps.

The DevOps Engineer is an important IT team member because they work with an internal customer. This includes QC personnel, software and application developers, project managers and project stakeholders usually from within the same organization. Even though they rarely work with external customers or end-users, but they keep close eye on  a “customer first” mindset to satisfy the needs of their internal clients.

Not to miss out, DevOps engineer holds broad knowledge and experience with Infrastructure automation tools. A key element of DevOps is automation.  A lot of the manual tasks performed by the more traditional system administrator and engineering roles can be automated by using scripting languages like Python, Ruby, Bash, Shell, Node.js. This ensures a consistent performance of manual tasks by removing the human component and allowing teams to spend the saved time on more of the broader goals of the team and company.

Hence, a DevOps engineer must possess the ability to implement automation technologies and tools at any level, from requirements to development to testing and operations.

Roles of Devops Engineer

Few of other responsibilities of DevOps Engineer include -

  • Manage and maintain infrastructure system
  • Maintaining and developing highly automated services landscape and open source services
  • Take over the ownership for integral components of technology and make sure it grows aligned with company success
  • Scale systems and ensure the availability of services with developers on changes to the infrastructure required by new features and products.

How to become a DevOps engineer?

DevOps is less about doing things a particular way, and more about moving the business forward and giving it a stronger technological advantage. There is not a single cookbook or path to become a DevOps professional. It's a continuous learning and consulting process. Every DevOps tasks have been originated from various development, testing, ops team consulting through consultants and running pilots, therefore it’s hard to give a generic playbook for how to get it implemented. Everyone should start with learning about the values, principles, methods, and practices of DevOps and trying to share it via any channel and keep learning.

Here’s my 10 golden tips to become a DevOps Engineer:

    1.  Develop Your Personal Brand with Community Involvement
    2. Get familiar with IaC(Infrastructure-as-Code) - CM
    3. Understand DevOps Principles & Frameworks
    4. Demonstrate Curiosity & Empathy
    5. Get certified on Container Technologies - Docker | Kubernetes| Cloud
    6. Get Expert in Public | Private | Hybrid Cloud offering
    7. Become an Operations Expert before you even THINK DevOps
    8. Get Hands-on with various Linux Distros & Tools
    9. Arm Yourself with CI-CD, Automation & Monitoring Tools(Github, Jenkins, Puppet, Ansible etc)
    10.Start with Process Re-Engineering and Cross-collaboration within your teams.

Skills that DevOps engineer need to have 

If you’re aiming to land a job as a DevOps engineer in 2018, it’s not only about having a deep specialized skill but understanding how a variety of technologies and skills come together. One of the things that makes DevOps both challenging to break into is that you need to be able to write code, and also to work across and integrate different systems and applications. Based on my experience, I have finalized on the list of top 5 skill sets  which you might require to be a successful DevOps engineer:

#1 - SysAdmin with Virtualization Experience

Deployment is a major requirement in devops role and ops engineer are good at that, All is needed is a deployments automation engine(chef, puppet, ansible) knowledge and its use-cases implementations. Nowadays, most of public clouds are running multiple flavors of virtualization so a must have 3 – 5 years of virtualization experience with VMware, KVM, Xen, Hyper-V is required along.

#2 - Solution Architect Role

Along with deployments or virtualization experience, understanding and implementation of all the hardware technologies in breadth is a must like storage and networking. Nowadays there is a very high-demand for people who can design a solution that scales and performs with high availability and uptime with minimal amount of resources to feed on (Max utilization).

#3 - A Passionate Programmer/API Expertise

Bash, Powershell, Perl, Ruby, JavaScript, Go, Python etc are few of popular scripting languages one need to have expertise on to become an effective DevOps Engineer. A DevOps engineer must be able to write code to automated repeatable processes. One need to be familiar with RESTFUL APIs.

#4 - Integration Skillset around CI-CD tool

A DevOps engineer should be able to use all his expertise to integrate all the open source tools and techniques to create an environment that is fully automated and integrated. The goal should be for zero manual intervention from source code management to deployment state, i.e. Continuous Integration, Continuous Delivery and Continuous Deployment.

#5 - Bigger Picture & Customer Focus

While the strong focus on coding chops makes software engineering a natural path to a career in DevOps, the challenge for candidates who are coming from this world is that they need to be able to prove that they can look outside their immediate team and project. DevOps engineers are responsible for facilitating collaboration and communication between the Development and IT teams within an organization, so to succeed in an interview, you’ll need to be able to demonstrate your understanding of how disparate parts of the technical organization fit and work together.

In nutshell, all you need are the list of tools and technologies listed below -

  • Source Control (like Git, Bitbucket, Svn, VSTS etc)
  • Continuous Integration (like Jenkins, Bamboo, VSTS )
  • Infrastructure Automation (like Puppet, Chef, Ansible)
  • Deployment Automation & Orchestration (like Jenkins, VSTS, Octopus Deploy)
  • Container Concepts (LXD, Docker)
  • Orchestration (Kubernetes, Mesos, Swarm)
  • Cloud (like AWS, Azure, Google Cloud, Openstack)

What are DevOps certifications available in the market? Are they really useful?

In 2018, DevOps professionals are in huge demand. The demand for DevOps professionals in the current IT marketplace has increased exponentially over the years. A certification in DevOps is a complete win-win scenario, with both the individual professional and the organization as a whole standing to gain from its implementation. Completing a certification in the same will not only provide added value to one’s profile as an IT specialist but also advance career prospects faster than would usually be possible.

The certifications related to DevOps are categorized into
         1)  Foundation,
         2) Certified Agile Process Owner &
         3) Certified Agile Service Manager

The introductory DevOps Certification is Foundation and certified individuals are able to execute the concepts and best practices of DevOps and enhance workflow and communication in the enterprise.

Yes, these DevOps  certifications hold numerous benefits in the following ways:

Benefits of DevOps  certification
1. Better Job Opportunities

DevOps is a relatively new idea in the IT domain with more businesses looking at employing DevOps processes and practices. There is a major gap between the demand for DevOps Certified professionals and the availability of the required DevOps professionals. IT professionals can take advantage of this huge deficit in highly skilled professionals by taking up a certification in DevOps for validation of DevOps skill set. This will ensure and guarantee much better job options.

2. Improved Skills & Knowledge

The core concept of DevOps revolves around brand new decision-making methods and thought processes. DevOps comes with a host of technical and business benefits which upon learning can be implemented in an enterprise. The fundamentals of DevOps consist of professionals working in teams of a cross-functional nature. Such teams consist of multi-disciplinary professionals ranging from business analysts, QA professionals, Operation Engineers, and Developers.

3. Handsome Salary

Rapid penetration of DevOps best practices in organizations and their implementation in the mentioned organizations is seeing massive hikes in the pay of DevOps professionals.

This trend is seen to be consistent and sustainable according to industry experts the world over. DevOps professionals are the highest paid in the IT industry.


4. Increased Productivity & Effectiveness

Conventional IT workplaces see employees and staff being affected by downtime which can be attributed to waiting for other employees or staff and other software and software related issues. The main objective of an IT professional at the workplace would be to be productive for a larger part of the time he/she will spend at the workplace. This can be achieved by minimizing the time spent waiting for other employees or software products and eliminating the unproductive and unsatisfying part of the work process. This will boost the effectiveness of the work done and will add greatly to the value of the enterprise and the staff as well.

If you are looking out for the “official” certification programs for DevOps, below are some of the useful links:

1) AWS Certified DevOps Engineer - Professional
2) Azure certifications | Microsoft
3) Google Cloud Certifications
4) Chef Certification
5) Red Hat Certificate of Expertise in Ansible Automation
6) Certification - SaltStack
7) Puppet certification
8) Jenkins Certification
9) NGINX University
10) Docker - Certification
11) Kubernetes Certified Administrator
12) Kubernetes Certified Application Developer
13) Splunk | Education Programs
14) Certifications | AppDynamics
15) New Relic University Certification Center
16) Elasticsearch Certification Programme
17)SAFe DevOps course

DevOps engineer exam

Below are the list of popular DevOps Engineer exams and certifications details -

DevOps Exam Syllabus Training Duration Minimal Attempts 

Exam Re-Take Information


AWS Certified DevOps Enginee
3 Months
No Minimal Requirement


Waiting Period: 14 days before they are eligible to retake the exam.

No limit on exam attempts until the test taker has passed


RHCA certification with a DevOps


RED HAT CERTIFIED


3 Days for each training


  • Red Hat Certificate of
Waiting Period: 1 week
concentration
ARCHITECT: DEVOPS

course


Docker Certification Associate Exam
DCA Exam

No Minimal Attempts

Wait 14 days from the day you fail to take the exam again

Certified Kubernetes Associate Exam
4-5 Weeks
No Minimal Attempts

Wait 14 days from the day you fail to take the exam again

Chef Certification Exam
8 Hours

Minimal 1 week time


Ajeet Singh

Ajeet Singh Raina

Blog Author

Ajeet Singh Raina is a Docker Captain & {code} Catalysts by DellEMC. He is currently working as Technical Lead Engineer in Enterprise Solution Group @ Dell R&D. He has over 10+ years of solid understanding of a diverse range of IT infrastructure, systems management, systems integration and quality assurance.  He is a frequent blogger at www.collabnix.com and have 150+ blogs contributed on new upcoming Docker releases and features. His personal blog attracts roughly thousands of visitors and tons of page-views every month. His areas of interest includes Docker on Swarm Mode, IoTs, and Legacy Applications & Cloud. 

Join the Discussion

Your email address will not be published. Required fields are marked *

1 comments

Bhavana 13 Nov 2018

I am searching for devops from very long, your article helped me a lot.After reading your article i gained more knowledge about devops. Thanks Knowledge Hut.

Suggested Blogs

How to Install Docker on Ubuntu

Docker is a platform that packages the application and all its dependencies in the container so that the application works seamlessly. The Container makes the application run its resource in an isolated process similar to the virtual machines, but it is more portable. For a detailed introduction to the different components of a Docker container, you can check out Introduction to Docker, Docker Containers & Docker Hub This tutorial covers the installation and use of Docker Community Edition (CE) on an Ubuntu 20.04 machine. Pre-requisitesAudienceThis tutorial is meant for those who are interested in learning Docker as a container service System Requirements Ubuntu 20.04 64-bit operating system. (If Linux OS is not in system, we can run docker using Virtual Box, PFB the steps) A user account with sudo privileges An account on Docker Hub to pull or push an image from Hub. Ubuntu Installation on Oracle Virtual Box If you want to use Ubuntu 20.04 without making any change to the Windows Operating system, you can proceed with the Oracle Virtual box.  Virtual Box is free and open-source virtualization software from Oracle. It enables you to install other operating systems in virtual machines. It is recommended that the system should have at least 4GB of RAM to get decent performances from the virtual operating system. Below are the steps for downloading Ubuntu 20.04 on Oracle Virtual box:Navigate to the website of Oracle Virtual Box, download the .exe file and get the latest stable version. 1. Once done with downloading the virtual box, we can navigate to and download the  Ubuntu disk image (.iso file) by clicking on the download option 2. Once the download has been completed for Ubuntu .iso file, open the virtual box and click on "New" present on top.  3. Enter the details of your virtual machine by giving any name, type as "Linux " and Version as Ubuntu (64 bit)  4. Choose the memory (RAM ) that needs to be allocated to the Virtual machine  and click on Next. (I have chosen 3000 MB) 5. After the RAM allocation ,Click on  Create a virtual disk now. This serves as the hard disk of the virtual Linux system. It is where the virtual system will store its files 6. Now, we want to select the Virtual Hard Disk.  7. We can choose either the “Dynamically allocated” or the “Fixed size” option for creating the virtual hard disk. 8. Finally, we have  to specify our Ubuntu OS's size. The recommended size is 10 GB, but it  can be increased if required.8. Finally, we have  to specify our Ubuntu OS's size. The recommended size is 10 GB, but it  can be increased if required.9. Ubuntu OS is ready to install in Virtual Box, but before starting the Virtual system, we need to a make few changes in settings. Click on storage under the setting.  10. Click on Empty under Controller IDE. Navigate to Attributes and browse the Optical Drive option. 11. Choose the .iso file from the location where it is downloaded. Once selected, click on OK and start the Virtual box by clicking on start present on the Top menu.12. Click ok and start the machine. 13. Proceed with "Install Ubuntu" 14. Under "Updates and other software" section, check "Normal installation", and the two options under “Other options” and continue.15. In Installation type, check Erase disk and install Ubuntu.16. Choose your current location and set up your profile. Click Continue.  17. It may take 10-15 minutes to complete the installation 18. Once the installation finishes, restart the virtual systemWe are done with pre-request, and can now proceed with using this Ubuntu. Docker Installation Process on Ubuntu  Method 1: Install Docker on Ubuntu Using Default Repositories One of the easiest ways is the installation of Docker from the standard Ubuntu 20.04 repositories, but It’s possible that the Ubuntu default repositories have not updated to the latest revision of Docker. It happens because in some cases Docker is not supporting that particular Ubuntu version. Therefore, there can be a scenario where  Ubuntu default repositories have not updated to the latest version. Log in to Virtual Box. Run “docker” as command to check if it is previously installed.To install Docker on Ubuntu box, first update the packages. It will ask for a password. Enter it and allow the system to complete the updates.sudo apt updateTo install Docker from Ubuntu default repositories, use the below command: sudo apt install docker.io To check the installed version, use the below: docker --version Since discussed above, it has installed the 19.03.8 version of docker whereas the latest version is 20.04  Method 2: Install Docker from Official Repository For installing docker on ubuntu 20.04 with the latest version, we’ll proceed with enabling the Docker repository, importing the repository GPG key, and finally installing the package. To install the docker on Ubuntu box, update your existing list of packages. It will ask for a password. Enter it and allow the system to complete the updates. sudo apt update  We need to install a few prerequisite packages to add HTTPS repository : sudo apt install apt-transport-https ca-certificates curl software-properties-common Import the repository’s GPG key using the following curl command: curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - Add the Docker APT repository to the system sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"Again, update the package database with the Docker packages sudo apt update Finally, install Docker using below command: sudo apt install docker-ce To check the installed version use below: docker --versionTo start, enable and check the status of docker, use below command: sudo systemctl  status docker  sudo systemctl  start  docker  sudo systemctl  enable  docker To check system wide information regarding docker installation, we use the command “docker info”. Information that is shown includes the kernel version, number of containers and unique images. The output will contain details as given below, depending upon the daemon running: Source:$ docker info  Client:   Context:    default   Debug Mode: true  Server:   Containers: 14    Running: 3    Paused: 1    Stopped: 10   Images: 52   Server Version: 1.13.0   Storage Driver: overlay2    Backing Filesystem: extfs    Supports d_type: true    Native Overlay Diff: false   Logging Driver: json-file   Cgroup Driver: cgroupfs   Plugins:    Volume: local    Network: bridge host macvlan null overlay   Swarm: active    NodeID: rdjq45w1op418waxlairloqbm    Is Manager: true    ClusterID: te8kdyw33n36fqiz74bfjeixd    Managers: 1    Nodes: 2    Orchestration:     Task History Retention Limit: 5    Raft:     Snapshot Interval: 10000     Number of Old Snapshots to Retain: 0     Heartbeat Tick: 1     Election Tick: 3    Dispatcher:     Heartbeat Period: 5 seconds    CA Configuration:     Expiry Duration: 3 months    Root Rotation In Progress: false    Node Address: 172.16.66.128 172.16.66.129    Manager Addresses:     172.16.66.128:2477   Runtimes: runc   Default Runtime: runc   Init Binary: docker-init   containerd version: 8517738ba4b82aff5662c97ca4627e7e4d03b531   runc version: ac031b5bf1cc92239461125f4c1ffb760522bbf2   init version: N/A (expected: v0.13.0)   Security Options:    apparmor    seccomp     Profile: default   Kernel Version: 4.4.0-31-generic   Operating System: Ubuntu 16.04.1 LTS   OSType: linux   Architecture: x86_64   CPUs: 2   Total Memory: 1.937 GiB   Name: ubuntu   ID: H52R:7ZR6:EIIA:76JG:ORIY:BVKF:GSFU:HNPG:B5MK:APSC:SZ3Q:N326   Docker Root Dir: /var/lib/docker   Debug Mode: true    File Descriptors: 30    Goroutines: 123    System Time: 2016-11-12T17:24:37.955404361-08:00    EventsListeners: 0   Http Proxy: http://test:test@proxy.example.com:8080   Https Proxy: https://test:test@proxy.example.com:8080   No Proxy: localhost,127.0.0.1,docker-registry.somecorporation.com   Registry: https://index.docker.io/v1/   WARNING: No swap limit support   Labels:    storage=ssd    staging=true   Experimental: false   Insecure Registries:    127.0.0.0/8   Registry Mirrors:     http://192.168.1.2/     http://registry-mirror.example.com:5000/   Live Restore Enabled: false Note: In case you get below error after running “docker info” command, one way is to add sudo in front and run the command, OR you can refer to the same error-resolving steps mentioned under Running Docker Images section. Running Docker Images and Verifying the process: To check whether you can access and download the images from Docker Hub, run the following command: sudo docker run hello-worldIn case of errors received after running the docker run command, you can correct it using the following steps, otherwise proceed with the next step of checking the image. ERROR: docker: Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Post http://%2Fvar%2Frun%2Fdocker.sock/v1.35/containers/create: dial unix /var/run/docker.sock: connect: permission denied. See 'docker run --help'.   Create the docker group if it does not exist sudo groupadd docker Add your user to the docker group.   sudo usermod -aG docker $USER   Eg:- sudo usermod -aG docker kanav Run the following command or Logout and login again and run ( if that doesn't work you may need to reboot your machine first)  newgrp docker Check if docker can be run without root docker run hello-world If the problem still continues, try to reboot it and run the command. To check the image, use this command: sudo docker images Uninstall Procedure: Below are the common commands used to remove images and containers: sudo  apt-get  purge docker-ce docker-ce-cli containerd.io To completely uninstall Docker, use below: To identify what are the installed packages, this is the command: dpkg -l | grep -i dockersudo apt-get purge -y docker-engine docker docker.io docker-ce docker-ce-cli  sudo apt-get autoremove -y --purge docker-engine docker docker.io docker-ce   To remove images, containers, volumes, or user created configuration files, these commands can be used: sudo rm -rf /var/lib/docker /etc/docker sudo rm /etc/apparmor.d/docker sudo groupdel docker sudo rm -rf /var/run/docker.sock  Conclusion: If you found this Install Docker on Ubuntu blog relevant and useful, do check out the Docker-Training workshop from KnowledgeHut, where you can get equipped with all the basic and advanced concepts of Docker! 
5563
How to Install Docker on Ubuntu

Docker is a platform that packages the application... Read More

How to Install Kubernetes on Windows

Kubernetes is a container-based platform for managing cloud resources and developing scalable apps. It is widely regarded as the most common platform for automating, deploying, and scaling the entire cloud infrastructure. The platform runs on all major operating systems and is the most widely used open-source cloud tool.  Kubernetes can scale your entire infrastructure, monitor each service's health, act as a load balancer, and automate deployments, among other things. You can deploy your pods (docker containers) and services across the cloud by installing and configuring as many nodes (clusters) as you want.Let’s get started. We will guide you through the complete roadmap on how to install Kubernetes for Windows users. This tutorial will show you how to set up Kubernetes and deploy the official web GUI dashboard, which will allow you to manage and monitor everything. PrerequisitesFor installing Kubernetes in your system, here are a few prerequisites that need special attention. The hardware and software requirements are discussed below:Hardware requirementsMaster node with at least 2 GB memory. (Additional will be great)Worker node with 700 MB memory capacity.Your Mouse/Keyboard (monitor navigation)Software requirementsHype-VDocker DesktopUnique MAC addressUnique product UUID for every nodeEnsuring that there is a full range of connectivity between all the machines in the cluster is a must.Installation ProcedureStep 1: Install & Setup Hyper-VAs we all know, Windows has its virtualization software, known as Hyper-V, which is essentially VirtualBox on steroids. Hyper-V allows you to manage your virtual machines (VMs) using either the free Microsoft GUI tool or the command line. It's simple to enable Hyper-V, but first, make sure your PC meets the following requirements:Your operating system should be Windows 10 (Enterprise, Pro, or Education), withAt least 4GB of RAM and CPU Virtualization support, though you should double-check that it's turned on in your BIOS settings.You can disable or enable features like Hyper-V that may not be pre-installed when Windows is installed. Always keep in mind that some of the features require internet access to download additional Windows Update components.To enable Hyper-V on your machine, follow the steps below:1. Open the Control Panel.2. Select Programs from the left panel.3. Next, go to Programs and Features, then Turn Windows Features On or Off.4. Examine Hyper-V and the Hypervisor Platform for Windows.5. Select OK.Your system will now begin installing Hyper-V in the background; it may be necessary to reboot a few times until everything is properly configured. Don't hold your breath for a notification or anything! Verify that Hyper-V is installed successfully on your machine by running the following command as Administrator in PowerShell:Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-VOnce the state is shown as Enabled for above command in Power shell, we are good to go.Step 2: Download Docker for Windows and install it.Kubernetes is a container orchestration system built on top of Docker. It is essentially just a tool for communicating with Docker containers and managing everything at an enterprise level. Simply go to install Docker and click to Get Docker Desktop for Windows (stable).Windows users can use Docker Desktop.Docker Desktop for Windows is a version of Docker optimized for Windows 10. It's a native Windows application that makes developing, shipping, and running dockerized apps simple. Docker Desktop for Windows is the fastest and most reliable way to develop Docker apps on Windows, as it uses Windows-native Hyper-V virtualization and networking. Docker Desktop for Windows can run Docker containers on both Linux and Windows.Installation of Docker DesktopLet us take a look on the different steps involved in installing docker desktop.Double-click Docker for Windows Installer to run the installer.Docker starts automatically once the installation is complete. Docker is running and accessible from a terminal, as indicated by the whale in the notification area.Run Try out some Docker commands in a command-line terminal like PowerShell!  Run the Docker version to check the version.Run Docker run hello-world to verify that Docker can pull and run images.Boom!As long as the Docker Desktop for Windows app is running, Docker is accessible from any terminal. The Docker whale in the taskbar has a setting button that can be accessed from the UI.For a detailed step by step installation guide with screenshot, visit the blog - How to Install Docker on Windows, Mac, & Linux: A Step-By-Step GuideWARNING: FOLLOW THE INSTRUCTIONS BELOW! If Docker was successfully installed but you can't find its tray icon, you'll need to restart your computer. Check the official troubleshooting guide here if the issue persists. Step 3: Install Kubernetes on Windows 10Docker includes a graphical user interface (GUI) tool that allows you to change some settings or install and enable Kubernetes.To install Kubernetes, simply follow the on-screen instructions on the screen:1. Right-click the Docker tray icon and select Properties.2. Select "Settings" from the drop-down menu.3. Select "Kubernetes" from the left panel.4. Check Enable Kubernetes and click "Apply"Docker will install additional packages and dependencies during the installation process. It may take between 5 and 10 minutes to install, depending on your Internet speed and PC performance. Wait until the message 'Installation complete!' appears on the screen. The Docker app can be used after Kubernetes has been installed to ensure that everything is working properly. Both icons at the bottom left will turn green if both services (Docker and Kubernetes) are running successfully and without errors.Example.Step 4: Install Kubernetes DashboardThe official web-based UI for managing Kubernetes resources is Kubernetes Dashboard. It isn't set up by default. Kubernetes applications can be easily deployed using the cli tool kubectl, which allows you to interact with your cloud and manage your Pods, Nodes, and Clusters. You can easily create or update Kubernetes resources by passing the apply argument followed by your YAML configuration file.Use the following commands to deploy and enable the Kubernetes Dashboard.1. Get the yaml configuration file from here.2. Use this to deploy it. kubectl apply -f .\recommended.yaml3. Run the following command to see if it's up and running.:kubectl.exe get -f .\recommended.yaml.txtStep 5: Access the dashboardThe dashboard can be accessed with tokens in two ways: the first is by using the default token created during Kubernetes installation, and the second (more secure) method is by creating users, giving them permissions, and then receiving the generated token. We'll go with the first option for the sake of simplicity.1. Run the following command PowerShell (not cmd)((kubectl -n kube-system describe secret default | Select-String "token:") -split " +")[1]2. Copy the generated token3. Runkubectl proxy.4. Open the following link on your browser: http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/5. SelectToken & paste the generated token6. Sign InFinallyYou'll be able to see the dashboard and your cloud resources if everything is set up correctly. You can then do almost all of the "hard" work without having to deal with the CLI every time. You may occasionally get your hands dirty with the command line, but if you don't understand Docker and Kubernetes or don't have the time to manage your own cloud, it's better to stick with some PaaS providers that can be quite expensive.Kubernetes Uninstallation ProcessThe procedures for uninstalling cert-manager on Kubernetes are outlined below. Depending on which method you used to install cert-manager - static manifests or helm - you have two options.Warning: To uninstall cert-maneger, follow the same steps as you did to install it, but in reverse. Whether cert-manager was installed from static manifests or helm, deviating from the following process can result in issues and potentially broken states. To avoid this, make sure you follow the steps outlined below when uninstalling.Step 1: Before continuing, make sure that all user-created cert-manager resources have been deleted. You can check for any existing resources with the following command:$ kubectl get Issuers,ClusterIssuers,Certificates,CertificateRequests,Orders,Challenges --all-namespacesAfter you've deleted all of these resources, you can uninstall cert-manager by following the steps outlined in the installation guide.Step 2: Using regular manifests to uninstall.Uninstalling from a regular manifest installation is as simple as reversing the installation process and using the delete command.kubectl.2. Delete the installation manifests using a link to your currently running version vX.Y. Z like so:$ kubectl delete -f https://github.com/jetstack/cert-manager/releases/download/vX.Y.Z/cert-manager.yamlStep 3: Uninstalling with Helm.1. Uninstalling cert-manager from a Helm installation is as simple as reversing the installation process and using the delete command on both the server and the client. kubectl and helm.$ helm --namespace cert-manager delete cert-manager2. Next, delete the cert-manager namespace:$ kubectl delete namespace cert-manager3. Finally, delete the cert-manger CustomResourceDefinitions using the link to the version vX.Y.Z you installed:$ kubectl delete -f https://github.com/jetstack/cert-manager/releases/download/vX.Y.Z/cert-manager.crds.yamlThe namespace is in the process of being terminated.The namespace may become stuck in a terminating state if it is marked for deletion without first deleting the cert-manager installation. This is usually because the APIService resource is still present, but the webhook is no longer active and thus no longer reachable.4. To fix this, make sure you ran the above commands correctly, and if you're still having problems, run:$ kubectl delete apiservice v1beta1.ConclusionIn this tutorial, we have explained in detail how to install Kubernetes with Hyper-V. Also, we have tackled what requirements we need, both in terms of the software and hardware. We have explained how to install Hyper-V and Docker on Windows 10.   It is important to note that the fundamental difference between Kubernetes and Docker is that Kubernetes is meant to run across a cluster and Docker is meant to run through nodes.   Kubernetes is also more extensive than Docker Swarm and is meant to coordinate a cluster of nodes at scale in production in an efficient manner. Each software is crucial to having a smooth installation process.   We finally looked at how to install and uninstall Kubernetes.
1704
How to Install Kubernetes on Windows

Kubernetes is a container-based platform for manag... Read More

How To Install Jenkins on Ubuntu

Jenkins is a Java-built open-source Continuous Integration (CI) and CD platform. Basically, Jenkins builds software projects, checks and deploys them. This is one of the most practical programming tools you can master, and today we will show you how Jenkins is installed on Ubuntu 18.04. Use this powerful tool to activate your VPS server!Jenkins is loved by teams of all sizes, for different language projects like Java, Ruby, Dot Net, PHP etc. Jenkins is a platform that is autonomous, and can be used on Windows, Linux or any other operating system.  Prerequisites Hardware Requirements: RAM- 4 GB (Recommended) Storage- more than 50 GB of Hard Disk Space (Recommended)        Software Requirements: Java: Java Development Kit (JDK) or Java Runtime Environment (JRE).  Web Browser: Any browser such as Google Chrome, Mozilla Firefox, Microsoft Edge. Operating System: An Ubuntu 18.04 server installed with a non-root sudo user and firewall. For help in the planning of production capability of a Jenkins installation see Choosing the right hardware for Masters. Why Use Jenkins? You need to consider continuous integration (CI) and continuous delivery (CD) to understand Jenkins: Continuous integration – the practice of continuous production combined with the main industry.  Continuous delivery – the code is constantly delivered to an area after the code is ready for delivery. It could be for production or staging. The commodity is supplied to a consumer base that can provide QA or inspection by customers. Developers update the code regularly in the shared repository (such as GitHub or TFS). Improvements made in the source code are made at the end of the day, making it difficult to identify the errors. So, Jenkins is used here. Once a developer changes the repository, Jenkins will automatically enable the build and immediately warn you in the event of an error (Continuous Integration CI). Installation Procedure: Step 1: Install Java Skip to the next section if you have Java already installed on your system. To check, please run the following command in the terminal: java --version Jenkins needs Java for running, but it doesn't include certain distributions by default, and Java versions of Jenkins are incompatible. Multiple Java implementations are available to you. OpenJDK is currently the most popular one, which we will use in this guide. Being an open-source Java application, Jenkins requires the installation of OpenJDK 8 on your system. The apt repositories can directly access OpenJDK 8. The installation of OpenJDK from standard repositories is recommended. Open and enter the following in the terminal window: $ sudo apt update  $ sudo apt install openjdk-8-jdk The download and installation will be requested. Press the "Y" button and press the Enter button to finish the process. Java 8 will be installed on your system. We are ready to download Jenkins package now as we have our requirements ready! Step 2: Install Jenkins The default Ubuntu packages for Jenkins are always behind the current version of the project itself. You may use the project-maintained packages to install Jenkins to take advantage of the newest patches and features. 1. add the framework repository key: $ wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key | sudo apt-key add  The device returns OK when the key is inserted. 2. Next, link the repository of Debian packages to the sources.list of the server: $ sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ > /etc/apt/sources.list.d/jenkins.list' 3. When both are in place, upgrade to apt to use the new repository: $ sudo apt update 4. Install Jenkins: $ sudo apt install jenkins Now we're going to start the Jenkins server, as Jenkins and its dependencies are in place. Step 3: Start Jenkins 1. You can start Jenkins using systemctl: $ sudo systemctl start jenkins 2. As systemctl does not display performance, you can use the status command to check that Jenkins has successfully launched: $ sudo systemctl status jenkinsIf all went well, the start of the performance should demonstrate that the service is active and ready to boot: Output: jenkins.service - LSB: Start Jenkins at boot time     Loaded: loaded (/etc/init.d/jenkins; generated)     Active: active (exited) since Sat 2021-04-17 00:34:17 IST; 26s ago       Docs: man:systemd-sysv-generator(8)    Process: 17609 ExecStart=/etc/init.d/jenkins start (code=exited, status=0/SUCC As Jenkins is running, so adjust the firewall rules to complete our further setup of Jenkins from the web browser. Step 4: Opening the Firewall 1. Jenkins works by default on port 8080, so let's open the port with ufw: $ sudo ufw allow 8080  2. Check ufw’s status: $ sudo ufw status You will see that traffic from anywhere is permitted to port 8080. Output: Status: active  To                         Action      From  --                         ------      ----  8000                       ALLOW       Anywhere                    CUPS                       ALLOW       Anywhere                    27017                      ALLOW       Anywhere                    27017                      ALLOW       192.168.1.10                8080                       ALLOW       Anywhere                    8000 (v6)                  ALLOW       Anywhere (v6)               CUPS (v6)                  ALLOW       Anywhere (v6)               27017 (v6)                 ALLOW       Anywhere (v6)               8080 (v6)                  ALLOW       Anywhere (v6) 3. If the firewall is inactive, the following commands will allow OpenSSH and turn it back on: $ sudo ufw allow OpenSSH  $ sudo ufw enable We can finish the initial configuration with Jenkins installed and our firewall configured. Note: If you decide to continue to use Jenkins, use a Nginx Reverse Proxy at Ubuntu 18.04 to configure Jenkins with SSL when your exploration has been completed to protect your passwords and any sensitive system or product information sent between the machine and the server in plain text. Step 5: Setting Up Jenkins 1. To set up installation, visit Jenkins on its default 8080 port with your server domain name or IP address: http://your_server_ip_or_domain:8080 You should see the Unlock Jenkins screen, which displays the initial password's location:2. You can use the cat command to display the password: $ sudo cat /var/lib/jenkins/secrets/initialAdminPassword 3. Copy the alphanumeric terminal 32-character password and paste into the Administrator Password field, then click Continue. Output: 0aaaf00d9afe48e5b7f2a494d1881326 The following screen shows the ability to install or select certain plugins: 4. We will click on the option to install proposed plugins to start the installation process immediately. 5. When the installation is done, the first administrative user will be prompted. You can save this step and use your initial password to continue as an Admin. However, we will take some time to create the user. The Jenkins default server is NOT encrypted to prevent data from being protected. Use the Nginx Reverse Proxy on Ubuntu 18.04 to configure Jenkins with SSL. This protects the information of users and builds transmitted through the web interface. 6. You will see a configuration instance page, which asks you to confirm your Jenkins instance's URL of choice. Confirm either your server's domain name or the IP address of your server.  7. Click Save and Finish once you have confirmed the relevant information. A confirmation page will show you that "Jenkins is ready!"  Hit Start using Jenkins button and it will take you to the Jenkins dashboard.  Congratulations! You have completed the installation of Jenkins. Step 6: Creation of New Build Jobs in Jenkins: The freestyle job is a highly versatile and user-friendly choice. It's easy to set up and many of its options appear in many other build jobs. For all projects, you can use it. Follow the following steps: You have to login to your Jenkins Dashboard by visiting2) Create New item: Click on the New Item on the left-hand side of the dashboard.3) Fill the project description: You can enter the job details as per your need.4) Source Code Management: Under source code management, enter the repository URL.You can also use a Local repository. 5) Build Environment: Now in the Build section, Click on the “Add build Setup” Select "Execute Windows batch command".Now, add the java commands. In this article, we have used javac HelloWorld.java and java HelloWorld.   6) Save the project: Click Apply and save the project. 7) Build Source Code and check its status: Click on “Build Now” on the left-hand side of the screen to create the source code. 8) Console Output: Select the build number and click on “Console Output” to check the status of the build run. When it shows success, it means that we have successfully run the HelloWorld program from the cGitHub Repository. In case of failure, you can check the job logs by clicking on failure icon and debug the root cause.Uninstall Jenkins Follow the instructions to uninstall Jenkins: $ sudo apt-get remove jenkins Uninstall Jenkins: $ sudo apt-get remove --auto-remove jenkins Purging your data: $ sudo apt-get purge jenkins or you can use: $ sudo apt-get purge --auto-remove jenkins Conclusion: Installing Jenkins on Ubuntu is really that easy. Jenkins has a low learning curve and so you can start to work with it as quickly as possible. In the above article we have learned how to install Jenkins in an Ubuntu machine where all the steps are explained clearly. In case you want to learn more about the core concepts of Jenkins Jobs, Pipelines, Distributed System, Plugins, and how to use Jenkins in depth you can enroll for our course Jenkins Certification Course. 
5532
How To Install Jenkins on Ubuntu

Jenkins is a Java-built open-source Continuous In... Read More

Useful links