
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialData Science
4.6 Rating 40 Questions 20 mins read68 Readers

Deep Learning is a branch of machine learning based on a set of algorithms that attempt to model high level and hierarchical representation in data using deep graph with multiple processing layers, multiple linear and non-linear transformations.
In Machine Learning (ML), basic process flow is from “Input” to “hand designed features” to “mapping from features” to “output”. In Representation Learning (RL), basic process flow is from “Input” to “features” to “mapping from features” to “output”. In Deep Learning (DL), basic process flow is from “Input” to “ simple features” to “more layers of abstract features” to “mapping from features” to “output”. Below table provides a quick reference of this understanding.
Topic / Area | Basic Process Flow |
|---|---|
Machine Learning | Input |
A neural network’s primary function is to receive a set of inputs, perform progressively complex computations, and then use the output to solve the problem. Neural networks are used for lot of different applications, one example would be classification. There are lots of classifiers available today such as logistic regression, support vector machine, decision trees, random forest and so on and of course neural networks.
For example, say we needed to predict if a person is healthy or sick. All you have are some input information such as height, weight, body temperature of each person, there is a need to classify / predict if a person is sick or healthy is a classification problem and it can be solved using approaches such as neural networks. The classifier would receive the data about the patient, process it and give a confidence score. A high score would indicate high confidence that patient is sick and a low score would suggest they are healthy. Score could be probability value of 0 to 1.
Neural network is highly structured and comes in layers. First layer is the input layer, last layer is the output layer and all layers in between are referred to as hidden layers. Hence a neural network can be viewed as the result of spinning classifiers together in a layered web.

*RNTN – Recursive Neural Tensor Network, *MLP – Multi Layer Perceptron, *RELU – Rectifier Linear Unit
This is one of the most frequently asked deep learning interview questions for freshers in recent times.
The key is that deep neural nets are able to break complex patterns down into a series of simpler patterns. For example: let’s say a task is to determine whether or not an image contained a human face. A deep neural net would first use edges to detect different parts of the face – the nose, lips, ears, eyes etc. and would then combine the results together to form the whole face. This important feature using simpler patterns as building blocks to detect “complex patterns” is what gives deep neural nets their strength.
There is one key downside to all this – deep neural nets take much longer to train. However with the advancement in technology, now there are high performance GPUs available that can finish training a complex net in a relatively quicker time compared to those using CPUs.
There are different categories to be able to handle both scenarios where labelled data exist and where there is no labelled data. Different techniques / approaches can be used to hand such problems.
Below is correct mapping for the tabular data of Side A to Side B:
| Side A | Side B |
|---|---|
| Unlabelled Data | Restricted Boltzmann Machine (RBM)Autoencoders |
| Text Processing | Recurrent Net (RNTN) |
| Unsupervised Learning | Restricted Boltzmann Machine (RBM) Autoencoders |
| Image Recognition | Deep Belief Nets (DBN) Convolutional Neural Nets (CNN) |
| Object Recognition | Recurrent Net (RNTN) Convolutional Neural Nets (CNN) |
| Speech Recognition | Recurrent Net (RNTN) |
| Classification | MLP/RELU, Deep Belief Nets (DBN) |
*RNTN – Recursive Neural Tensor Network, *MLP – Multi Layer Perceptron, *RELU – Rectifier Linear Unit
a) Training is quick if the gradient is large and slow if it is small
b) With backpropagation, the gradient becomes smaller as it works back through the net
c) The gradient is calculated multiplying two numbers between 0 and 1
d) All of the above.
All of the above / Option d is correct option.
Now coming to second part of question for the explanation, below is described:
With a method called backpropagation, we run into a problem called vanishing gradient or sometimes the exploding gradient. When that happens, training takes too long and accuracy really suffers.
For example, when we are training a neural net, we are constantly calculating a cost value. The cost is typically difference between net’s predicted output and the actual output from a set of labelled training data. The cost is then lowered by making slight adjustments to the weights and biases over and over throughout the training process, until the lowest possible value is obtained. The training process utilizes a “gradient”, which measures the rate at which the cost will change w.r.t. a change in a weight or a bias.
Early layers of a network are slowest to train, early layers are also responsible for early detection of features and building blocks. If we consider the face detection, early layers are important to figure out edges to correctly identify the face and then pass on the details to later layers where it’s features are captured and consolidated to be able to provide final output.
A convolutional neural network (CNN) is a type of artificial neural network used in image recognition and processing that is specifically designed to process pixel data. In deep learning, a CNN is a class of deep neural nets, most commonly applied to analysing visual imagery. CNNs use a variation of multilayer perceptrons designed to require minimal pre-processing. Convolution is the process of filtering through the image for a specific pattern.
CNNs typical has the following layers other than Input and Output layers –
There is also a fully connected layer (FC) at the end prior to output layer, in order to equip net with the ability to classify data samples.
A fundamental architecture comprising of all layers for a CNN can be described in the image below. This is an illustrative structure and layers can be used differently to solve a specific problem based on a context or situation.

Yes, CNN does perform dimensionality reduction. Pooling layer is used for this.
A must-know for anyone looking for top deep learning interview questions, this is one of the frequently asked deep learning behavioral interview questions.
Correct answer option is D.
The best method would be to train only the last layer as previous all layers work as feature extractors. They would have extracted key features as part of initial layers in a similar scenario.
Since the data similarity is very high, we do not need to retrain the model. All we need to do is to customize and modify the output layers according to our problem statement. We use the pretrained model as a feature extractor. For example: let’s say we decide to use models trained on Imagenet to identify if the new set of images have cats or dogs. Here the images we need to identify would be similar to imagenet, however we just need two categories as our output – cats or dogs. In this case all we do is just modify the dense layers and the final softmax layer to output 2 categories instead of a 1000. Additionally training time takes longer in these type of neural nets. Hence it would save significant amount of time. Re-training last layer will take care of the new dataset at hand with a similar feature being created already and executed leveraging that.
There are potentially four scenarios and they can be explained in below diagrammatical fashion.

The primary reason overfitting happens is because the model learns even the tiniest details present in the data. So after learning all the possible patterns it can find, the model tends to perform extremely well on the training set but fails to produce good results on the test sets. It falls apart when faced with previously unseen data. And this is critical from an accuracy standpoint.
One way to prevent overfitting is to reduce the complexity of the model. This is exactly what regularization does. If we set the regularization parameter to a large value, the decay in the weights during gradient descent update will be more. Hence, the weights of most of the hidden units will be close to zero.
Since the weights are negligible, the model will not learn much from these units. This will end up making the network simpler and thus reduce overfitting.
Let us take another example. Assume we are using a tanh activation function.

Now if we set regularization parameter to a large value, the weight of the units will be less. To calculate the z[l], we can use the following:
Z[l] = w[l] m[l-1] + n[l]
Hence the z-value will be less. If we use the tanh activation function then these low values of z[l] will lie near the origin.

The key aspect with this change is that we are only using the linear region of the tanh function. This will make every layer in the network mostly linear. i.e. we will get linear boundaries that separate the data which prevents overfitting.
This, along with other Python interview questions on deep learning, is a regular feature in deep learning interviews, be ready to tackle it with the approach mentioned below.
Correct answer option is B.
ReLU or Rectifier Linear Unit gives continuous output in range 0 to infinity. However in output layer, we would require a finite range of values.
A unit employing the rectifier is called Rectifier Linear Unit or ReLU.
Range is 0 to infinity.
.jpg&w=3840&q=75)
In case of Leaky ReLU, f(y) is ay and not zero. The leak helps to increase the range of the ReLU function. Usually the value of a is 0.01 or equivalent to that.
Correct answer is B.
The output can be calculated as 3 (2*4 + 3*5 + 4*6) = 3 (8 + 15 + 24) = 3 * 47 = 141.
MLP or Multi Layer Perceptron is a class of feed forward artificial neural net. It comprises of at least 3 layers of nodes – input layer, hidden layer and output layer. Except the input node, each node is a neuron that uses a nonlinear activation function.