
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialBig Data
4.5 Rating 50 Questions 60 mins read6 Readers

Big Data has the potential to significantly transform any business. It has patterns, trends, and insights hidden in it. These insights when discovered help any business to formulate their current and future strategies.
It helps to reduce unnecessary expenses and increase efficiency. It helps to reduce losses.
By exploiting Big Data, you can understand the market in general and your customers in particular in a very personalized way and accordingly customize your offerings. The chances of conversion and adoption increase manyfold.
The use of Big Data reduces the efforts/budget of marketing and in turn, increases the revenue. It gives businesses an added advantage and an extra edge over their competitors.
If you do not harness the potential of Big Data, you may be thrown out of the market.
As the Big Data offers an extra competitive edge to a business over its competitors, a business can decide to tap the potential of Big Data as per its requirements and streamline the various business activities as per its objectives.
So the approaches to deal with Big Data are to be determined as per your business requirements and the available budgetary provisions.
First, you have to decide the kind of business concerns you are having right now. What kind of questions you want your data to answer. What are your business objectives and how do you want to achieve them.
As far as the approaches regarding Big Data processing are concerned, we can do it in two ways:
As per your business requirements, you can process the Big Data in batches daily or after a certain duration. If your business demands it, you can process it in streamline fashion after every hour or after every 15 seconds or so.
It all depends on your business objectives and the strategies you adopt.
There are various platforms available for Big Data. Some of these are open source and the others are license based.
In open-source, we have Hadoop as the biggest Big Data platform. The other alternative being HPCC. HPCC stands for High-Performance Computing Cluster.
In a licensed category, we have Big Data platform offerings from Cloudera(CDH), Hortonworks(HDP), MapR(MDP), etc. (Hortonworks is now merged with Cloudera.)
Features and specialities of these Big Data platforms/tools are as follows:
1) Hadoop:
2) HPCC:
3) Storm:
4) CDH:
5) HDP:
6) MapR:
7) Cassandra:
8) MongoDB:
All the projects that involve a lot of data crunching (mostly unstructured) are better candidates for Big Data projects. Thus Telecom, Banking, Healthcare, Pharma, e-commerce, Retail, energy, transportation, etc. are the major sectors that are playing big with Big Data. Apart from these any business or sector that is dealing with a lot of data is better candidates for implementing Big Data projects. Even the manufacturing companies can utilize Big Data for product improvement, quality improvement, inventory management, reducing expenses, improving operations, predicting equipment failures, etc. Big Data is being used in Educational fields also. Educational industry is generating a lot of data related to students, courses, faculties, results, and so on. If this data is properly analyzed and studied, it can provide many useful insights that we can be used to have an improvement in the operational efficiency and the overall working of the educational entities.
By harnessing the potential of Big Data in the Educational field, we can expect the following benefits:
Healthcare is one of the biggest domains which makes use of the Big Data. Better treatment can be given to patients as the patient's related data gives us the necessary details about the patient's history. It helps you to perform only the required tests, so the costs related to diagnosis gets reduced. Any outbreaks of epidemics can be better predicted and hence the necessary steps for its prevention can be taken early. Some of the diseases can be prevented or their severity can be reduced by taking preventive steps and early medication.
Following are the observed benefits of using Big Data in Healthcare:
Another area/project which is suitable for the implementation of Big Data is - 'Welfare Schemes'. It assists in making informed decisions about various welfare schemes. We can identify those areas of concern that need immediate attention. The national challenges like Unemployment, Health concerns, Depletion of energy resources, Exploration of new avenues for growth, etc. can be better understood and accordingly dealt with. Cyber Security is another area where we can apply Big Data for the detection of security loopholes, identifying cyber crimes, illegal online activities or transactions, etc. Not only we can detect such activities but also we can predict in advance and have better control of such fraudulent activities.
Some of the benefits of using Big Data in Media and Entertainment Industry can be as given below:
The projects related to Weather Forecasting, Transportation, Retail, Logistics, etc. can also be good players for Big Data.
Many sectors are harnessing the power of Big Data. However, the top 3 domains as per the market understanding that can and are utilizing the power of Big Data are :
These are followed by energy and utilities, media and entertainment, government, logistics, telecom and many more. How Big Data offers value addition to different enterprises can be seen as follows.
Financial Institutions:
Big Data Insights has the potential to drive innovation in the Financial Sector.
There are certain challenges that financial institutions have to deal with. Some of these challenges are as follows:
Big Data can provide better solutions to deal with such issues. There are Big Data solution providers that cater specifically to the financial sector. Some of the Big Players are:
Panopticon Software, Nice Actimize, Streambase Systems, Quartet FS, etc.
Manufacturing:
Manufacturing Industry is another biggest user of Big Data. In the manufacturing industry, a lot of data is generated continuously. There are enormous benefits we get, by utilizing Big Data in the Manufacturing sector.
Some of the major use cases are:
Healthcare:
The volume of data that is being generated in healthcare systems is very large. Previously due to a lack of consolidated and standardized data, the healthcare sector was not able to process and analyse this data. Now, by leveraging Big Data, the Healthcare sector is gaining various benefits such as Better disease Prediction, Enhanced Treatment, Reduced Costs, Increased Patients Care, etc.
Some of the major Big Data Solution Providers in the Healthcare industry are:
By model optimization, we mean to build/refine the model in such a way to be as realistic as it can be. It should reflect the real-life situation as closely as possible. When we apply a model to the real-world data, it should give the expected results. So optimization is required. This is achieved by capturing some significant or key components from the dataset.
There are some tools available in the market for optimizing the models. One such tool is the ‘TensorFlow Model Optimization Toolkit’. There are three major components in model optimization:
An objective function is a function that we need to optimize for model Optimization. The solution to a given optimization problem is nothing but the set of values of the decision variables. These are those values of the decision variables for which our objective function reaches its expected optimal value. The values of the decision variables are restricted by the constraints.
The classification of optimization problems is based on the nature of our objective function and the nature of given constraints. In an unconstrained optimization problem, there are no constraints and our objective function can be of any kind - linear/nonlinear. In the linear optimization problem, our objective function is linear in variables and the given constraints are also linear.
In a quadratic optimization problem, our objective function quadratic in variables and the given constraints are linear. In a nonlinear optimization problem, our objective function is an arbitrary function that is nonlinear of the given decision variables.
The given constraints can be linear or they can be nonlinear. The objective of model optimization is to find the optimal values of the given decision variables.
Two methods are used to evaluate models:
We use a test data set to evaluate the performance of the model. This test data set should not be part of the training of the model. Otherwise, the model will suffer from overfitting. In Hold-out method, the given data set is divided randomly into three sets:
When the data available is limited, we use the Cross-validation method. Here, the data set is divided into 'k' number of equal subsets. We build a model for each set. It is also known as K-fold Cross-validation. The categories of models under supervised learning are:
The corresponding methods for evaluation of these models are also categorized as:
In the evaluation of regression models, we are concerned with the continuous values whereas, in the evaluation of classification models, we try to find out the error between the actual value and the predicted value. Here in the classification models, our concern is on the correct and incorrect classification of the number of data points. We try to find out the confusion matrix and calculate the ROC curve to help us better in model evaluation.
Confusion matrix:
From the confusion matrix we find out the following:
ROC curve:
It is the ratio of True Positive Rate (TPR) to the False Positive Rate (FPR).
There are some other evaluation methods also for the evaluation of classification models such as:
The often-used methods are the confusion matrix and the ROC curve.
In Big Data integration we are required to integrate the various data sources and systems. The policies regarding data collection, extraction, storage as well processing are bound to change. The various data points have different formats, architectures, tools and technologies, protocols of data transfer, etc. So deciding to capture and use Big Data for your business will involve integrating these various data points,
making some changes to the formats, usage, securities, etc. It will have some impact on an overall day to day operation of the business.
There are several issues in Big Data integration that needs to be addressed before going ahead with the process of integration. Some of the issues are:
Likely, many businesses have already deployed their IT infrastructures depending on their requirements. So when deciding to have Big Data integration in place, businesses are required to rethink their IT strategies and make the necessary provisions for capital investments.
So initially while planning for Big Data adoption, there we see a reluctance in the organization as it requires drastic changes at various levels.
In many enterprises, traditionally, the data is stored in silos. The integration of these different data silos is not an easy task as they have different structures and formats.
So, when we are planning for the Big Data integration, the focus should be on long term requirements of the overall Big Data infrastructure and not just the present integration needs.
The traditional platforms for data storage and processing are insufficient to accommodate Big Data. So, now if you are looking to tap the potential of Big Data, you are required to integrate the various data systems. Here, you are not just integrating among the various Big Data tools and technologies but also with the traditional non-Big Data systems.
Big Data systems are also required to be integrated with the other new kind of data sources- may be Streaming data, IoT data, etc. In simpler terms, we can say that Big Data Integration combines the data which is originating from a variety of data points or different sources and formats, and then provides the user with a unified and translated view of the combined data.
There are some obvious challenges in Big Data integration such as syncing across various data sources, uncertainty, data management, finding insights, selection of proper tools, skills availability, etc. When you aspire for Big Data integration, attention should also be given on data governance, performance, scalability and security. The Big Data integration should start with the logical integration taking into consideration all the aspects and needs of the business and also the regulatory requirements and then end with the actual physical deployment.
Tools: iWay Big Data Integrator, Hadoop can also play a very big role in Big Data integration. As Hadoop is an open-source and requires commodity hardware, enterprises can expect a lot of savings with regards to data storage and processing. You can integrate with Hadoop the data systems of various kinds. There are so many open-source tools available such as Flume, Kafka, Sqoop, etc.
In a Graph Analytics of Big Data, we try to model the given problem into a graph database and then perform analysis over that graph to get the required answers to our questions. There are several types of graph analytics used such as:
Path Analysis is generally used to find out the shortest distance between any two nodes in a given graph.
Route optimization is the best example of Path Analysis. It can be used in applications such as supply chain, logistics, traffic optimization, etc. Connectivity Analysis is used to determine the weaknesses in a network. For Example - a Utility PowerGrid.
The connectivity across a network can also be determined using the Connectivity Analysis. Community Analysis is based on Density and Distance. It can be used to identify the different groups of people in a social network. Centrality Analysis enables us to determine the most 'Influential People' in a social-network.
Using this analysis, we can find out the web pages that are highly accessed. Various algorithms are making use of Graph Analytics. For example- PageRank, Eigen Centrality and Closeness, Betweenness Centrality, etc.
Graphs are made up of nodes/vertices and edges. When applied to real-life examples, 'people' can be considered as nodes. For example customers, employees, social groups, companies etc. There can be other examples also for nodes such as buildings, cities and towns, airports, bus depots, distribution points, houses, bank accounts, assets, devices, policies, products, grids, web pages, etc.
Edges can be the things that represent relationships. For example- social networking likes and dislikes emails, payment transactions, phone calls, etc. The Edges can be directed, non-directed or weighted. For example -John transferred money to Smith, Peter follows David on some social platform, etc. The examples of non-directed edges can be - Sam likes America etc. An example of weighted edges can be something like - 'the number of transactions between any two accounts is very high', the time required to reach any two stations or locations', etc. In a big data environment, we can do Graph Analytics using Apache Spark 'GraphX' by loading the given data into memory and then running the 'Graph Analysis' in parallel.
There is also an interface called 'Tinkerpop' that can be used to connect Spark with the other graph databases. By this process, you can extract the data out of any graph database and load it into memory for faster graph analysis. For analyzing the graphs, we can use some tools such as Neo4j, GraphFrames, etc. GraphFrames is massively scalable.
Graph analytics can be applied to detect fraud, financial crimes, identifying social media influencers, route optimization, network optimization, etc.