
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialData Science
4.7 Rating 70 Questions 35 mins read10 Readers

Organizations from various industries, including manufacturing, customer service, information technology, etc., are employing artificial intelligence to develop systems and machines that can perform jobs that humans find difficult by minimizing delays and errors and maximizing productivity.
AI may be employed to create more effective and devastating weapons. AI is a tool that cybercriminals can employ to hack humans. Numerous end-of-the-world prophets have even envisioned a situation where artificial intelligence will rule, and humans will be reduced to slaves.
The entire world must work together to establish a council and define AI ethics, which addresses all moral questions and problems pertaining to AI systems. These challenges, situations, or worries are those that prompt people, societies, and organizations to consider what is good and wrong. These AI ethics should develop a transparent data privacy policy that gives users some degree of control.
Machine learning is a subset of artificial intelligence that uses mathematical models to enable a system to keep picking up new skills and improve based on experience. On the other hand, artificial intelligence imitates human cognitive processes like learning and problem-solving using logic and math.
I believe that the employment of AI for a noble human cause will make it more significant than anything else. AI can aid in developing vaccinations and treatments for diseases that are now incurable. Additionally, it can aid in developing robotic arms that can aid in sensitive surgeries that are difficult for humans to do. It can assist in developing systems that enable especially abled persons to lead normal lives.
Consider we are working on a regression task where 3 input variables or neurons are present in the input layer. The output layer will consist of a single neuron which will output a real value for the regression. We have one hidden layer in the network with three neurons. Each input neuron is connected to the hidden layer's other neurons. Let w11, w12, and w13 be the weights connected from input neuron x1 to neurons z1, z2, and z3 present in the hidden layer, respectively. Similarly, we have w21, w22, and w23 from input neuron x2 to neurons z1, z2, and z3, respectively. Followed by, w31, w32, and w33 from input neuron x3 to neurons z1, z2, and z3, respectively. The weights of the links present between the hidden layer and the output layer are v1, v2, and v3, connecting the respective neurons from each of these layers. The output is also connected to a bias term ‘b.’

There are several iterations that are performed before we come up with some satisfactory results. While we are propagating from the input layer to the hidden layer, x1, x2, and x3 act as the input neurons, which are multiplied to the respective weights while traversing to the hidden layer. The hidden layer will sum all the inputs it receives from this link and outputs it to the next layer. Before the next layer consumes the output from the hidden layer as its input, it is again multiplied with its respective weights v1, v2, and v3. The output from neuron y is then compared to the desired output. The loss is calculated as the difference between the actual output from the network and the desired output. The weights are then adjusted with respect to this loss, and the same steps are repeated in the next iteration. The network starts to minimize the loss, and then there comes the point where the loss starts to increase. In that instance, we can consider reducing the learning rate to reach the minimum value. This is like gradient descent methodology.
Common interview questions for artificial intelligence, don't miss this one. The back propagation-based artificial neural networks follow the backpropagation algorithm, which aims to generalize the training set to achieve the network’s ability to generate the desired output.
Alan Turing is credited with deciphering Nazi codes and assisting the Allies in winning World War I. He is also credited for creating the Turing Test and becoming modern computers' founder. The test was first created to determine whether a conversation between humans and artificial intelligence, displayed simply in text, could trick a human. A machine is said to have human intelligence if it can have a conversation with a human without being recognized as a machine. However, it has since become shorthand for any Al that can fool a person into trusting they are witnessing or interacting with a real human.
Once an AI system has learned something, it can continue to build on its existing knowledge. Every artificial neural network requires massive amounts of data for effective training of the model. Therefore, it is not a good idea to train a neural network that requires massive amounts of data to be trained from scratch. Instead, we can always find a pre-trained model that can achieve similar tasks. The pre-trained model is reused in a new learning model. If the two models are developed to perform similar tasks, then generalized knowledge can be shared between them. We reuse the lower layers of the pre-trained model, which not only requires less training data but also speeds up the training time significantly. This idea of re-training on a pre-trained model instead of training it from scratch is known as transfer learning. Transfer learning is becoming increasingly popular with Google, Microsoft, Hugging face, etc., training models for a widespread use case on the already available big data with them. For instance, to train a text similarity model or sentiment analyzer model, we can make use of pre-trained models like BERT or MLNet and perform transfer learning on these models to generalize to a specific use case.
Natural language processing is a subfield of artificial intelligence concerned with the interactions between computers and human language, with a focus on how to design computers to handle and interpret massive volumes of natural language data.
Following are some of the applications of Natural Language Processing
Machine Translation
By using software to translate text or speech from one language to another, machine translation aids in overcoming language barriers. To translate text, documents, and webpages from one language into another, Google developed the machine translation tool known as Google Translate.
Automatic Summarization
Automatic summarization is useful for summarizing the contextual meaning of documents and information while maintaining the emotional meanings hidden inside the information. Automatic summarization is particularly useful when we wish to get an overview of a news item or blog post while avoiding redundancy from multiple sources.
Sentiment Analysis
Companies make use of NLP applications, like sentiment analysis, to identify opinions and sentiments online to understand what users feel about their products and services.
Text Classification
Text classification enables us to assign predefined categories to a document to organize, structure, and filter the information. For example, an application of text categorization is spam filtering in email.
Virtual Assistants
Virtual assistants use natural language processing (NLP) to understand user text or voice input and even respond to them or perform certain actions. For example, Siri by Apple and Alexa by Amazon is the most popular and widely used virtual assistants.
One of the most frequently posed artificial intelligence Interview Questions, be ready for it. Convolution Neural Networks or CNN is a popular artificial deep neural network used widely in image recognition applications. They also work well with audio signal input and text data. The three main types of layers of CNN are the convolution layer, pooling layer, and fully connected layer.
The central component of a CNN is the convolutional layer, where most computation takes place. It needs input data, a filter, and a feature map, among other things. Assume that the input will be an RGB color image. As a result, the input will have three dimensions; height, width, and depth, which is analogous to RGB in an image. Only the pixels in their receptive fields are connected to the neurons in the first convolutional layer, not every pixel in the input image. Each neuron in the second convolutional layer is, therefore, entirely connected to neurons situated within the first layer's receptive regions of the image. With this architecture, the network can focus on low-level features in the first hidden layer, put them together into higher-level features in the next hidden layer, and so on. This process is known as convolution.
The number of parameters in the input is decreased via dimensionality reduction carried out through the pooling layer. The pooling operation sweeps a filter across the entire input and populates the output array by applying an aggregation function (minimum, maximum, average) to the values in the receptive field. Both convolution and pooling layers use the ReLU activation function.
Each node in the output layer of the fully connected layer is directly connected to a node in the layer below it. This layer conducts the classification operation using the features extracted using the various filters and preceding layers. Fully connected layers often utilize a SoftMax activation function to categorize inputs appropriately, producing a probability ranging from 0 to 1.
Pooling is an operation that enables the use of a filter on the feature data set such that we can preserve the features and account for any kind of distortions. It is one of the steps involved in convolution neural networks. The idea behind pooling is to be able to recognize images that might represent the same entity, say a cat but might be distorted. The cat can be sleeping or walking, and only the face is visible in the image or even a rotated image. Pooling might reduce the total information content we have with us, but still, it preserves the most key features. By disregarding unnecessary, non-important information, we will prevent overfitting. Pooling is categorized majorly into three types – max pooling, min pooling, and average pooling.
In the image, the pooling operation is shown. We have a 3x3 filter which is applied on the 5x5 feature map. The result is a 3x3 feature map which means that we have lost information compared to the original feature set. But since we have used max-pooling, which means that when a given filter is applied on a subset from the feature map, we pick the max value from the feature set. The maximum number in our feature map represents the closest match to our feature. In the case of min pooling and average pooling, we take the minimum and average values from the filter, respectively.
The brighter pixels are chosen from the image by max pooling. When the image's background is black, and we are just interested in the lighter pixels, max pooling is helpful. On the other hand, min pooling keeps the darker pixels, which results in a darker image than the original. Since the average pooling method is smoothest down the image, it may be difficult to see the sharp features while using this pooling method.
Fuzzy logic is based on a rule-based system that has a nonlinear mapping of the input to the output. Fuzzy logic provides an inference structure that enables a mechanism of representing linguistic constructs such as ‘high,’ ‘low,’ good,’ ‘bad,’ ‘average,’ etc. In fuzzy systems, values are indicated by a number called the truth value. It ranges from 0 to 1, where 0 represents absolute falseness, and 1 represents absolute truth. The fuzzy logic operates on the concept of a set function or membership function. Fuzzy systems are based on rules. The number of rules increases exponentially with the dimension of the input space. For example, the statement “India is an ancient country” can be translated by fuzzy systems as India is a member of a set of countries in the world.
The Markov decision process is a form of reinforcement learning used in artificial intelligence. They represent Markov chains with the possibility that an agent may select one of the many potential courses of action, and the transition probabilities will change depending on the action selected. For instance, there are always 1, 2, 3, or 4 actions in the Pacman video game. The objective is to get to the exit, but there are ghosts and rewards along the route. Every action the agent does will be accompanied by a set of probabilities. Consider that the agent will have a 60% chance of receiving a reward if it moves up, compared to a 30% chance of being eaten by the ghost if it advances to the right. Sometimes you have no choice but to act in the only way you can. The Markov decision process offers a mathematical framework that aids in developing a plan of action that can provide the maximum rewards over time. At each given point, the decision is partially random and partly in the decision maker's control.
Recurrent neural networks (RNNs) are distinct from feed-forward neural networks, in which activations only flow from input to output layers. A recurrent neural network has a similar architecture, but it also incorporates connections that point backward in the network, much like feedback loops. All the inputs from earlier steps are a function of a recurrent neuron's output. The output of these earlier time steps is kept in a network memory cell. The shortcoming of CNN's memory is eliminated by this. The network must memorize a sequence for use scenarios like trying to analyze consecutive video frames. This makes RNN the best choice. The most widely used recurrent network is the Long Short-Term Memory Network or LSTM. The applications of RNNs include predicting stock prices, autonomous driving systems, speech-to-text, sentiment analysis, etc.