
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialIn this section we will look at Spark’s Machine Learning library and how to use it. We will also see how to build pipelines using Supervised and Unsupervised learning. However, we will not be able to go into details as the scope of ML is very big, and cannot be covered in this tutorial alone.
Artificial intelligence is changing our present and it is going to shape our future. It can be considered as one of the biggest innovations of this century. In future it is going to be so dominant that anyone who does not understand it is sure to be left behind in this world.
Law enforcement uses visual recognition and natural language processing to process footage from body cameras. The Mars Rover Curiosity even utilizes AI to autonomously select inspection-worthy soil and rock samples with high accuracy.
Today we can come across many examples where machines are taking up tasks which have been always done by humans. It would not be an exaggeration to think that in future we could see housekeeping deliveries being done by a bot in a hotel room. We already know of experiments being conducted for Pizza deliveries using drones.
Machine learning is a subcategory of artificial intelligence. The goal of Machine Learning is to enable computers to train and learn on their own. A machine’s learning algorithm helps the computer or the machine to pick patterns in the training data, then build models and predict results or outcomes based on the past learning without being programmed explicitly with rules.

In supervised learning, we usually have training examples which have the correct labels associated with them. For example, to classify handwritten digits, supervised learning will have its input as hundreds or thousands of handwritten digits with the correct labels. The ML algorithm will then train on these examples and learn the relationship between the images and the associated numbers so that it can then apply this learning to classify the new numbers without any labels.
How do you find the underlying structure of a dataset? How do you summarize it and group it most usefully? How do you effectively represent data in a compressed format? These are the goals of unsupervised learning, which is called “unsupervised” because you start with unlabeled data (there’s no Y).
In contrast to supervised learning, it’s not always easy to come up with metrics for how well an unsupervised learning algorithm is doing. “Performance” is often subjective and domain-specific.
When building models used to make predictions, we often train a model based on an existing data set. The model may be re-trained as more and more training data sets become available. For example, we would re-train a recommendation engine based on collaborative filtering as we learned more about the events which led to product sales or targeted engagement metrics.
The goal of MLlib is to make machine learning very easy to use and adapt for every user, and also to make ML more scalable. We have seen that each new release has added new algorithms and also has performance improvements. But apart from these a lot of effort has been put by the developers to make MLlib user-friendly and easy to use. Like Spark Core, MLlib also provides APIs in all the three programming languages i.e. Scala, Java and Python. This makes MLlib adaptable to programmers coming from diverse backgrounds.
Usually a practical Machine Learning pipeline consists of following four stages:
If we take an example of classifying text documents, we might see the following involved: text segmentation, feature extraction, text documents classification and finally training a classification model and doing cross validation. Though this may look easy initially as there are many libraries which are freely available to accomplish these stages, but with huge datasets connecting the stages, building a robust pipeline is not an easy task. Most of the ML libraries will not be able to handle or provide support for distributed computing involving huge datasets. Also may of them may not have native pipeline building and tuning support.
Apache Spark’s new pipeline API can be found in the package “spark.ml”. An ML pipeline consists of multiple stages. The two basic pipeline stages are Transformer and Estimator.
Transformer takes a dataset as its input and the output is another augmented dataset. Estimator on the other hand fits one dataset and it produces a model which is a transformer.
It is very easy to create a pipeline in Spark. We just need to declare the stages, configure the parameters needed and then just chain them in a pipeline object. Below is an example of a simple text classification pipeline. This consists of a tokenizer , a hashing term frequency feature extractor and a logistic regression step.
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, lr))
The pipeline itself is an Estimator, and hence we can call fit on the entire pipeline
model.transform(testDataset)
.select('text, 'label, 'prediction)
.collect()
.foreach(println)
If users can implement the pipeline interfaces, they can easily plugin their own versions of the transformers or estimators into a machine learning pipeline. The MLlib APIs are very easy to use as well, as code sharing outside MLlib is also very easy. Those who want to explore complete examples can look in the examples folder in the Spark repository
In the above module we got introduced to Spark’s ML module and learnt how to use it and build pipelines.