
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialMachine learning is a subclass of Artificial Intelligence that gives the ability for the programs to learn without being explicitly programmed to do so. Before beginning to work on a machine learning problem, it is important to determine if it actually requires machine learning or not. It is also important to collect the right data, prepare the data in the right way and clean the data before providing it as input data to the learning model.
There are a wide variety of modules and frameworks that can be used to implement machine learning algorithms. Packages can be installed using the ‘pip’ command. Suppose we wish to install the scikit-learn package, we can do so using the below command on the command line.
pip install scikit-learn
The Machine Learning algorithms extract patterns from data and learn from them, like how humans learn based on experiences. Machine Learning algorithms can be classified into different types of learning based on the input and the type of input that is supplied. Machine Learning is widely used for applications such as data mining, computer vision, Natural Language Processing, Search engines, credit card fraud detection, speech and handwriting recognition, strategy games, robotics, and much more.
It can be visualized with the help of the below image:

It is one of the most popular learning methods, since it is easy to understand and relatively easier to implement ad get relevant outputs.
Consider this example: How does a child learn? It is taught how to walk, run, talk, and it is made to understand the difference between walking and running.
Supervised learning works in a similar way, there is human supervision involved in the form of features being labelled, feedback given to the data (whether it predicted correctly, and if not what the right prediction has to be) and so on.
Once the algorithm has been fully trained on such data, it can predict outputs for never-before-seen inputs in-line with the data on which the model was trained with good accuracy. It is also understood as a task-oriented algorithm since it focuses on a single task and is trained on huge number of examples until it predicts output accurately.
It comes in between the supervised and unsupervised learning algorithms.
It exists so as to bridge the gap that occurs due to usage of supervised and unsupervised algorithms.
Supervised learning algorithms are expensive, meaning they need to be labelled (by a human). On the other hand, unsupervised learning algorithms might not be very accurate and might not be applicable in every field.
In semi-supervised learning algorithm, the input data is a combination of labelled and unlabelled dataset. There is a small amount of labelled data and a comparatively large amount of unlabelled data. Similar kind of data is clustered into a single unit with the help of an unsupervised learning algorithm. The labelled data is used to label the unlabelled data further.
This is the opposite of supervised learning, wherein no labelling is provided on the input data that is supplied to the unsupervised learning algorithm. The algorithm has to learn from the unlabelled data and perform operations over it on its own. Most of the times, real-world data is unstructured and unlabelled. Hence unsupervised algorithms need to be used. Otherwise humans interfere and label the input data so that it can be passed as input to a supervised learning algorithm.
Consider this example: A set of images of horses in different angles, colours. No label is provided to the unsupervised learning algorithm indicating that all the images are that of horses. The algorithm itself learns from the images based on the features of these images, similarities, and differences.
An algorithm that defines a reinforcement agent that decides what step has to be taken next so as to arrive at the result or find the optimal path. When no dataset is provided to a reinforcement learning algorithm, it learns from its surroundings and experiences. When an action is taken by the reinforcement algorithm, it is either awarded or punished (ways of awards and punishments differ based on the data available). If the algorithm is awarded, it moves in the same direction or on the same lines. On the other hand, if the algorithm is punished, it understands that it needs to find out a different way to arrive at the solution.
How is it different from supervised learning algorithms?
Supervised learning algorithm have an input and the expected output, whereas in reinforcement learning, the algorithm has to decide what action it needs to take next.
Implementing the simplest machine learning algorithm, i.e. Linear regression, which is considered to be the ‘Hello World’ program in the field of machine learning:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
#A random data set is generated
np.random.seed(0)
x = np.random.rand(100, 1)
y = -3.5 + 5.19* x + np.random.rand(100, 1)
#The model is initialized
regression_model = LinearRegression()
The data is fit on the model, with the help of training regression_model.fit(x, y)
The output is predicted
y_predicted = regression_model.predict(x)
The model built is evaluated using mean squared error parameter rmse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
print("The slope value is: ", regression_model.coef_)
print("The intercept is: ", regression_model.intercept_)
print("The Root mean squared error is: ", rmse)
#The data is visualized usign the matplotlib library
plt.scatter(x, y, s=8)
plt.xlabel('X axis')
plt.ylabel('Y axis')
The values that are predicted plt.plot(x, y_predicted, color='g') plt.show()
Output:
The slope value is: [[5.12655106]]
The intercept is: [-2.94191998]
The Root mean squared error is: 0.07623324582875007
In this post, we understood how the environment can be set up, the important of data preparation, cleaning, and the difference between training, testing and validation datasets.