Machine Learning with Python Training in Dallas, TX, United States

Know how Statistical Modeling relates to Machine Learning

  • 48 hours of Instructor led Training
  • Comprehensive Hands-on with Python
  • Covers Unsupervised learning algorithms such as K-means clustering techniques
  • Get introduced to deep learning techniques
Group Discount

Description

Transformational advancements in technology in today’s world are making it possible for data scientists to develop machines that think for themselves. Based on complex algorithms that can glean information from data, today’s computers can use neural networks to mimic human brains, and make informed decisions based on the most likely scenarios. The immense possibilities that machine learning can unlock are fascinating, and with data exploding across all fields, it appears that in the near future Machine Learning will be the only viable alternative simply because there is nothing quite like it!

Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world? KnowledgeHut’s comprehensive course will help you go from basic to advanced concepts in Machine Learning using Python, the most popular language in the Data Science space. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each using Python libraries. You will work on real life case studies to get hands-on experience and learn Machine Learning techniques to build predictive models.
 
A career in Machine Learning is much sought after because it defines and shapes the future. Sign up for this comprehensive course and learn from industry experts who will handhold you through your learning journey.

What You Will Learn

PREREQUISITES
  • Familiarity with statistics
  • Elementary programming knowledge

3 Months FREE Access to all our E-learning courses when you buy any course with us

Who Should Attend?

  • If you are interested in the field of machine learning and want to learn essential machine learning algorithms and implement them in real life business problem
  • If you're a Software or Data Engineer interested in learning the fundamentals of quantitative analysis and machine learning

Knowledgehut Experience

Instructor-led Live Classroom

Interact with instructors in real-time— listen, learn, question and apply. Our instructors are industry experts and deliver hands-on learning.

Curriculum Designed by Experts

Our courseware is always current and updated with the latest tech advancements. Stay globally relevant and empower yourself with the training.

Learn through Doing

Learn theory backed by practical case studies, exercises and coding practice. Get skills and knowledge that can be effectively applied.

Mentored by Industry Leaders

Learn from the best in the field. Our mentors are all experienced professionals in the fields they teach.

Advance from the Basics

Learn concepts from scratch, and advance your learning through step-by-step guidance on tools and techniques.

Code Reviews by Professionals

Get reviews and feedback on your final projects from professional developers.

Curriculum

Learning Objectives:

In this module, you will visit the basics of statistics like mean (expected value), median and mode. You will understand the distribution of data in terms of variance, standard deviation and interquartile range; and explore data and measures and simple graphics analyses.Through daily life examples, you will understand the basics of probability. Going further, you will learn about marginal probability and its importance with respect to data science. You will also get a grasp on Baye's theorem and conditional probability and learn about alternate and null hypotheses.

Topics:
  • Statistical analysis concepts
  • Descriptive statistics
  • Introduction to probability and Bayes theorem
  • Probability distributions
  • Hypothesis testing & scores
Hands-on :
Learn to implement statistical operations in Excel.
Learning Objectives:

In this module, you will get a taste of how to start work with data in Python. You will learn how to define variables, sets and conditional statements, the purpose of having functions and how to operate on files to read and write data in Python. Understand how to use Pandas, a must have package for anyone attempting data analysis in Python. Towards the end of the module, you will learn to visualization data using Python libraries like matplotlib, seaborn and ggplot.

Topics:
  • Python Overview
  • Pandas for pre-Processing and Exploratory Data Analysis
  • Numpy for Statistical Analysis
  • Matplotlib & Seaborn for Data Visualization
  • Scikit Learn

Hands-on: No hands-on

Learning Objectives :

This module will take you through real-life examples of Machine Learning and how it affects society in multiple ways. You can explore many algorithms and models like Classification, Regression, and Clustering. You will also learn about Supervised vs Unsupervised Learning, and look into how Statistical Modeling relates to Machine Learning.

Topics:
  • Machine Learning Modelling Flow
  • How to treat Data in ML
  • Types of Machine Learning
  • Performance Measures
  • Bias-Variance Trade-Off
  • Overfitting & Underfitting

Hands-on: No hands-on

Learning Objectives:

This module gives you an understanding of various optimization techniques like Batch Gradient Descent, Stochastic Gradient Descent, ADAM, RMSProp.

Topics:
  • Maxima and Minima
  • Cost Function
  • Learning Rate
  • Optimization Techniques

Hands-on: No hands-on

Learning Objectives:

In this module you will learn Linear and Logistic Regression with Stochastic Gradient Descent through real-life case studies. It covers hyper-parameters tuning like learning rate, epochs, momentum and class-balance.You will be able to grasp the concepts of Linear and Logistic Regression with real-life case studies. Through a case study on KNN Classification, you will learn how KNN can be used for a classification problem. You will further explore Naive Bayesian Classifiers through another case study, and also understand how Support Vector Machines can be used for a classification problem. The module also covers hyper-parameter tuning like regularization and a case study on SVM.

Topics:
  • Linear Regression
  • Case Study
  • Logistic Regression
  • Case Study
  • KNN Classification
  • Case Study
  • Naive Bayesian classifiers
  • Case Study
  • SVM - Support Vector Machines
  • Case Study
Hands-on:
  • With attributes describing various aspect of residential homes, you are required to build a regression model to predict the property prices using optimization techniques like gradient descent.
  • This dataset classifies people described by a set of attributes as good or bad credit risks. Using logistic regression, build a model to predict good or bad customers to help the bank decide on granting loans to its customers.
  • Predict if a patient is likely to get any chronic kidney disease depending on the health metrics.
  • We receive 100s of emails & text messages everyday. Many of them are spams. We would like to classify our spam messages and send them to the spam folder. We would also not like to incorrectly classify our good messages as spam. So correctly classifying a message into spam and ham is of utmost importance. We will use Naive Bayesian technique for text classifications to predict which incoming messages are spam or ham.
  • Biodegradation is one of the major processes that determine the fate of chemicals in the environment. This Data set containing 41 attributes (molecular descriptors) to classify 1055 chemicals into 2 classes - biodegradable and non-biodegradable. Build Models to study the relationships between chemical structure and biodegradation of molecules and correctly classify if a chemical is biodegradable and non-biodegradable.
Learning Objectives:

Learn about unsupervised learning technique - K-Means Clustering and Hierarchical Clustering. Real Life Case Study on K-means Clustering

Topics:
  • Clustering approaches
  • K Means clustering
  • Hierarchical clustering
  • Case Study
Hands-on :
In marketing, if you're trying to talk to everybody, you're not reaching anybody.. This dataset has social posts of teen students. Based on this data, use K-Means clustering to group teen students into segments for targeted marketing campaigns. 
Learning Objectives:

This module will teach you about Decision Trees for regression & classification problems through a real-life case study. You will get  knowledge on Entropy, Information Gain, Standard Deviation reduction, Gini Index,CHAID.The module covers basic ensemble techniques like averaging, weighted averaging & max-voting. You will learn about bootstrap sampling and its advantages followed by bagging and how to boost model performance with Boosting.
Going further, you will learn Random Forest with a real-life case study and learn how it helps avoid overfitting compared to decision trees.You will gain a deep understanding of the Dimensionality Reduction Technique with Principal Component Analysis and Factor Analysis. It covers comprehensive techniques to find the optimum number of components/factors using scree plot, one-eigenvalue criterion. Finally, you will examine a case study on PCA/Factor Analysis.

Topics:
  • Decision Trees
  • Case Study
  • Introduction to Ensemble Learning
  • Different Ensemble Learning Techniques
  • Bagging
  • Boosting
  • Random Forests
  • Case Study
  • PCA (Principal Component Analysis) and Its Applications
  • Case Study
Hands-on:
  • Wine comes in various style. With the ingredient composition known, we can build a model to predict the the Wine Quality using Decision Tree (Regression Trees).
  • In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. In this case study, use AdaBoost, GBM & Random Forest on Lending Data to predict loan status. Ensemble the output and see your result perform than a single model.
  • Reduce Data Dimensionality for a House Attribute Dataset for more insights &  better modeling.
Learning Objectives: 

This module helps you to understand hands-on implementation of Association Rules. You will learn to use the Apriori Algorithm to find out strong associations using key metrics like Support, Confidence and Lift. Further, you will learn what are UBCF and IBCF and how they are used in Recommender Engines. The courseware covers concepts like cold-start problems.You will examine a real life case study on building a Recommendation Engine.

Topics:
  • Introduction to Recommendation Systems
  • Types of Recommendation Techniques
  • Collaborative Filtering
  • Content based Filtering
  • Hybrid RS
  • Performance measurement
  • Case Study
Hands-on:
You do not need a market research team to know what your customers are willing to buy.  Netflix is an example of this, having successfully used recommender system to recommend movies to its viewers. Netflix has estimated, that its recommendation engine is worth a yearly $1 billion.
An increasing number of online companies are using recommendation systems to increase user interaction and benefit from the same. Build Recommender System for a Retail Chain to recommend the right products to its users 

Projects

Predict Property Pricing using Linear Regression

With attributes describing various aspects of residential homes, you are required to build a regression model to predict the property prices using optimization techniques like gradient descent.

Classify good and bad customers for banks to decide on granting loans.

This dataset classifies people described by a set of attributes as good or bad credit risks. Using logistic regression, build a model to predict good or bad customers to help the bank decide on granting loans to its customers.

Classify chemicals into 2 classes, biodegradable and non-biodegradable using SVM.

Biodegradation is one of the major processes that determine the fate of chemicals in the environment. This Data set contains 41 attributes (molecular descriptors) to classify 1055 chemicals into 2 classes - biodegradable and non-biodegradable. Build Models to study the relationships between chemical structure and biodegradation of molecules and correctly classify if a chemical is biodegradable

Read More

Cluster teen student into groups for targeted marketing campaigns using Kmeans Clustering.

In marketing, if you’re trying to talk to everybody, you’re not reaching anybody. This dataset has social posts of teen students. Based on this data, use K-Means clustering to group teen students into segments for targeted marketing campaigns.

Read More

Predict quality of Wine

Wine comes in various types. With the ingredient composition known, we can build a model to predict the Wine Quality using Decision Tree (Regression Trees).

Note: These were the projects undertaken by students from previous batches.  

reviews on our popular courses

The trainer was good and the content was very relevant. Roleplays were very meaningful. The trainer had good experience on core concepts.

Review image

Jansaidavali Shaik

Project Lead
Attended Certified ScrumMaster®(CSM) workshop in July 2018

The training was really good.

Review image

Amrita Nanda

Principal Application Consultant
Attended Certified ScrumMaster®(CSM) workshop in October 2018

Thank you, Anderson, for the wonderful training. The way you managed time between the modules in the sessions was really amazing. The training has motivated to apply these concepts to work!!

Review image

Soji Kuriakose

Business Analyst at UST Global from Trivandrum, India
Attended Certified ScrumMaster®(CSM) workshop in June 2018

This course definitely exceeded my expectations. There was plenty of food provided, frequent breaks, and the time that we were engaged with the instructor just seemed to fly by. He was very good at what he does, and made the learning both interesting and effortless. With the knowledge I gained from the two day course, I was able to complete the certification test the next day, passing with flying colors. Well Done !!

Review image

Michael Morris

Principal Project Manager at DCCCD from Dallas,TX, United States
Attended Certified ScrumMaster®(CSM) workshop in January 2018

Faqs

The Course

Machine learning came into its own in the late 1990s, when data scientists hit upon the concept of training computers to think. Machine learning gives computers the capability to automatically learn from data without being explicitly programmed, and the capability of completing tasks on their own. This means in other words that these programs change their behaviour by learning from data.

Machine learning enthusiasts are today among the most sought after professionals. Learn to build incredibly smart solutions that positively impact people’s lives, and make businesses more efficient! With Payscale putting average salaries of Machine Learning engineers at $115,034, this is definitely the space you want to be in!

You will:
  • Get advanced knowledge on machine learning techniques using Python
  • Be proficient with frameworks like TensorFlow and Keras

By the end of this course, you would have gained knowledge on the use of machine learning techniques using Python and be able to build applications models. This will help you land lucrative jobs as a Data Scientist.

There are no restrictions but participants would benefit if they have elementary programming knowledge and familiarity with statistics.

On successful completion of the course you will receive a course completion certificate issued by KnowledgeHut.

Your instructors are Machine Learning experts who have years of industry experience.

Finance Related

Any registration cancelled within 48 hours of the initial registration will be refunded in FULL (please note that all cancellations will incur a 5% deduction in the refunded amount due to transactional costs applicable while refunding) Refunds will be processed within 30 days of receipt of written request for refund. Kindly go through our Refund Policy for more details : http://www.knowledgehut.com/refund

KnowledgeHut offers a 100% money back guarantee if the candidate withdraws from the course right after the first session. To learn more about the 100% refund policy, visit our Refund Policy.

The Remote Experience

In an online classroom, students can log in at the scheduled time to a live learning environment which is led by an instructor. You can interact, communicate, view and discuss presentations, and engage with learning resources while working in groups, all in an online setting. Our instructors use an extensive set of collaboration tools and techniques which improves your online training experience.

Minimum Requirements: MAC OS or Windows with 8 GB RAM and i3 processor.

Have More Questions?

Machine Learning with Python Course in Dallas, TX

Data Analysis and Machine Learning Using Python Dallas Dallas is a city that is full of surprises and offers one diverse experiences, perfect for both tourists and business travellers. The city has a vibrant cultural scene and is dotted with captivating neighborhoods, many museums, glitzy malls and charming cafes. Besides all of this, it is also a major business hub. Dallas is one of the largest commercial centers and has the third largest concentration of Fortune 500 companies in the United States. In 2013, Dallas became the fourth largest employment center in the country and has been consistently attracting a talented pool of programmers to serve the growing need in technology companies. Currently, they are recruiting professionals who have either enrolled or completed an e-learning option in data analysis using Python course in Dallas. To exploit this demand in the market, interested programmers can join a KnowledgeHut program, where the online classes provide comprehensive knowledge of the subject and make sure that participants of this course have acquired all the necessary skills sets to work with this medium. Considered to be one of the fastest growing, top level programming languages, Python is used to create clear programs on both big and smaller scales. However, efficient use of this language requires careful study and fluency with the medium and joining a machine learning using Python course in Dallas will help individuals prepare for a certification. A certification will provide one with a recognized credential and endorse their ability to work with this language to create general and domain-specific applications. Technology drives a big portion of the economy in Dallas and it has several blue chip companies that operate in this region. This competitive business scenario certainly wants skilled people, especially with Python capabilities to achieve business goals. Interested individuals can pursue an online training program to develop capability in data analysis and machine learning using Python and the course intends to introduce them to design practices to tackle scenarios that use Python packages. New Alternative Python enjoys widespread popularity as a programming language as well as for its utilization in both scientific computing and machine learning. It is considered to be a programming language of choice for serious developers and can be deployed easily to develop large and small applications. Programming with this is far simpler than other languages and hence, this is the preferred language for several engineering, science and business applications. Keeping Ahead of the Curve A data analysis training using Python in Dallas will be a great credential to acquire, as this online program will help build proficiency in the language and help professionals stay ahead of the curve. KnowledgeHut training empowers candidates to become adept professionals, as industry experts who make sure that all resources necessary are available for the students teach online classes. KnowledgeHut Empowers You Programmers can pursue the KnowledgeHut program for machine learning training using Python at a pocket friendly price. Intensive study via online modules make sure that students have the skills to develop applications at work or ace any exam in the subject.