
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialDatabase
4.7 Rating 65 Questions 35 mins read9 Readers

A data warehouse is a large, centralized repository of structured data designed explicitly for fast querying and analysis. At the same time, a database is a smaller, specialized system designed for storing and managing data. Data warehouses are typically used for business intelligence and decision-making, while databases are used for more specific tasks such as keeping customer orders or inventory management.
Data integration in a data warehouse environment typically involves extracting data from multiple sources, transforming it into a consistent format, and loading it into the data warehouse. This process can be done manually or through ETL (extract, transform, load) tools, which automate the process of moving and changing data.
A star schema is a type of data warehouse design in which several dimension tables surround a central fact table. In contrast, a snowflake schema is a design in which the dimension tables are further divided into multiple sub-dimension tables. Star schemas are generally more efficient for querying and analysis, while snowflake schemas provide more granular detail and can be more complex to maintain.
Various factors, including incorrect or missing data, data inconsistencies, and data corruption, can cause data quality issues in a data warehouse environment. To address these issues, data warehouse professionals may use multiple techniques, such as data cleansing, validation, and reconciliation.
A batch update is a process in which data is periodically extracted from source systems, transformed, and loaded into the data warehouse in one large batch. On the other hand, a real-time update involves continuously updating the data warehouse as data becomes available in the source systems. Batch updates are generally more efficient and cost-effective, while real-time updates provide more up-to-date data but can be more complex to implement and maintain.
One of the most frequently posed DWH interview questions, be ready for it.
There are several steps to designing a data warehouse schema:
A fact table in a data warehouse contains the measurements or facts of a business process. It is typically used to store data about events, transactions, or other business activities. The fact table is usually the central table in a data warehouse, and it contains foreign keys to the dimension tables, which are used to describe the context of the data in the fact table.
A dimension table, on the other hand, is a table that contains descriptive information about the data in the fact table. Dimension tables are used to provide context to the data in the fact table, such as the time period, location, or product category. Dimension tables are typically used to describe the attributes of the data in the fact table, such as the customer name, product name, or location.
One way to differentiate between a fact table and a dimension table is by the type of data they contain. Fact tables typically have quantitative data, such as numerical measurements or counts, while dimension tables contain qualitative data, such as descriptions or categories. Another way to differentiate between the two is by their level of detail. Fact tables typically have detailed, granular data, while dimension tables contain more general, summary-level data.
There are several ways to handle slowly changing dimensions in a data warehouse:
A staple in Data warehouse testing interview questions, be prepared to answer this one.
ETL stands for Extract, Transform, and Load. It is a process used to extract data from various sources, transform it into a format suitable for analysis and reporting, and load it into a data warehouse for storage and querying.
In a data warehouse environment, ETL periodically extracts data from various sources, such as transactional databases, log files, and external APIs, and loads it into a central data warehouse. The data is transformed during this process to ensure that it is in a consistent format and meets the requirements of the data warehouse schema.
ETL is an important part of the data warehousing process as it allows organizations to integrate and analyze data from various sources in a centralized location, providing a single source of truth for business intelligence and decision-making. It also enables organizations to automate the process of data ingestion and transformation, ensuring that data is accurately and efficiently loaded into the data warehouse regularly.
This question is a regular feature in Data interview questions, be ready to tackle it.
A data mart is a subset of a data warehouse designed to focus on a specific subject or department within an organization. It is a smaller, more detailed version of a data warehouse and is often used to store and analyze a particular data set.
On the other hand, a data warehouse is a centralized repository of data used to support business intelligence activities, such as reporting and data analysis. It stores historical data from various sources, including transactional databases, logs, and other sources, and is designed to support the querying and analysis of the data.
One key difference between a data mart and a data warehouse is that a data mart is usually designed to support the needs of a specific group or department within an organization. In contrast, a data warehouse is designed to support the entire organization's needs. Data marts are also typically smaller, more straightforward than data warehouses, and easier to set up and maintain.
A must-know for anyone heading into a Data warehouse interview, this question is frequently asked in Data warehouse questions.
Some common challenges that may be faced while implementing a data warehouse include the following:
Several steps can be taken to handle data integration in a data warehouse environment:
It's no surprise that this one pops up often in DWH interview questions.
Several steps can be taken to handle data cleansing and transformation in a data warehouse:
Making an organized representation of data, usually in the form of a diagram or database schema, is known as data modeling. It entails specifying the entities, their connections, and each entity's characteristics and data types.
Data modeling is used to build and optimize the database schema for storing and accessing massive amounts of data in a data warehouse setting. Finding the important business entities and their connections, the data sources, and the transformation procedures required to fill the data warehouse are all part of this process.
Creating a logical and effective structure for data storage and querying that satisfies business objectives and criteria are the aim of data modeling in a data warehouse. This takes into account factors like data integrity, scalability, and performance.
Dimensional modeling methods, which divide data into fact and dimension tables, are also used in data modeling in a data warehouse. While dimension tables contain context or metadata about the measures, fact tables contain measures or facts about the business. This strategy enables quicker searching and simpler data analysis.
Generally speaking, data modeling in a data warehouse is an important phase in the design and implementation of a data warehouse because it ensures that the data is structured and arranged in a way that satisfies the business's goals and facilitates efficient data analysis.
As per my experience, typically, data warehousing is a process of collecting, storing, and managing data from various sources to provide meaningful business insights. It involves using various technologies and techniques such as ETL (Extract, Transform, Load), data modeling, data governance, and reporting. The design and implementation of data warehousing solutions typically involve the following steps:
Overall, designing and implementing data warehousing solutions requires a deep understanding of the business requirements, knowledge of data warehousing technologies and techniques, and experience in ETL development and data governance.