
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialProgramming
4.7 Rating 60 Questions 30 mins read13 Readers

A linked list is one of the most appropriate data structures which can be used to implement stacks and queues. A variety of linked lists, like circular and doubly linked lists, make it very simple to implement other data structures. A stack operates similarly to a stack of books, where the book placed on the top most recently can be easily accessed as it is the one that was added last. This is called the LIFO principle, and in the case of queues, like in general life, we have queues; the person who is standing at the last will get a service at the very end, and this is the FIFO principle.
LRU cache is an algorithm used for page replacement by memory management systems. The LRU cache is an acronym for the Least recently used cache. It replaces any page that is not used for long and is replaced by the most recently used page whenever the memory is full. The queues and hash maps are used to implement the LRU cache. A queue is an implementation of a doubly linked list. The cache size, i.e., the total number of available frames, determines the maximum size of the queue. The least recently used pages will be near the front of the queue, while the most recently used pages will be near the back.
It will be O(N2). As in a linked list, the beginning is always the head of the list, and then you can proceed to the next pointer and the nodes to reach your desired position where an element needs to be added.

Assuming the length of the list is in the loop will take n iterations and assuming a worst case that you want to add the element at the end of the list, or you want to add the elements in a sorted manner, and the given element is the largest. In this case, by inserting n values, the number of loops will be:
0+1+2+3+.......+(n-1)=n(n-1)2
Which will be of the order of O( n2 )
Stack, Queue, Tables, Lists, and Linked Lists. are a few linear data structures. Linear data structures can be constructed as a continuous arrangement of data elements in the memory. It can be constructed by using an array data type. In linear Data Structures, the relationship of adjacency is maintained between the data elements.
A staple in linked list questions, be prepared to answer this one. Linked lists are like linear data structures that don't have ordered memory placements. These contain nodes that store two kinds of data, a value and a pointer which points to another node and hence tells its address. For example, you can consider boxes that are connected with each other with a rope; these boxes are certainly not placed next to each other but randomly, and each box has some item in it and a rope that shows which is the next or the previous box.

Linked lists are primarily contrasted with arrays. Arrays have faster access times in constant time for accessing random elements via index. Accessing items in a linked list takes linear time. Linked lists are fast in inserting and removing elements, and can be done in constant time if the target positions of the nodes are known, whereas arrays take linear time. Also, since linked lists are not tied to a contiguous block of available memory like arrays are, linked lists can easily grow much larger than arrays. Queues and stacks are often implemented using linked lists. This is because these structures are often large and dynamic. Queues and stacks also don't require random indexed access to elements, since elements are added and removed at the end. A linked list works well here because adding or removing elements from the end of the list can be done in constant time.
Sorting and searching linked lists may not be as common as arrays, but you can still do it. Reordering a linked list makes it easy to change the position of elements in the list by simply reassigning links to the containing nodes. Contrast this with changing the position of elements in an array. This usually means using additional temporary space to copy and move multiple other elements. However, accessing a random element is much slower in a linked list than in an array. Mergesort is preferred over quicksort using linked lists because quicksort relies heavily on random access to elements, which is slower with linked lists than with arrays. Search algorithms that operate naively on linked lists are generally slower than searches on arrays, because algorithms such as binary search do not inherently require random access. However, these algorithms can be accelerated to similar orders of complexity using techniques such as jump lists and fast and slow pointers.
To add 1 to a number represented as linked list you have to first reverse the list and then you have to traverse through all the elements of the list and keep adding one to it and if there is a carry add it to the next node and at the end again you have to reverse the list and return head.


One of the most frequently posed linked list Interview Questions, be ready for it. In the case of Arrays, if you use a Quick Sort, you generally don’t require any supplementary space for storing, but if you choose a merge sort, it will cost you an extra O(N) space for storage, where N is the length of the array so it will be quite expensive for you. This, in turn, will increase the running time of the algorithm. But if you compare the average time complexity for both the sorts, you have O(NlogN) average time complexity, which will be approximately the same for both, but the constants you will get are not the same. So, for arrays, merge sort is not optimal due to the usage of extra storage of O(N).
In the case of a Linked List, all elements are not at adjacent positions like arrays, and you can insert an element at any place in it in O(1) space and time if you are given the reference and hence for even a merge sort you won’t be needing any extra space. As arrays have elements at contiguous positions, you can access any memory location, whereas in the linked list, you cannot for a quick sort algorithm, you need a lot of such movements, and for that, you have to move along all the elements in the list which increases the load, Whereas in merge sort it is much optimal hence you will prefer it.
To find the mid element of a link, you can use a two-pointer method as an optimal method. In this, you have two pointers, one fast pointer and a second slow pointer. The fast one moves to double the steps of the slower pointer. You can use these when the slower one is at the center, and the fast one is at the end of the list. First of all, you need to initialize two pointers: slow_pntr and fast_pntr, and you should point them to the head node. Keep doing the traversal until fast_pntr is pointing at null or the next to the fast_pntr points at null. You should then move the slow_pntr one node and the fast_pntr two nodes simultaneously. At this point, you will see that the slow_pntr is pointing at the middle element of the linked list.

Yes, you can simply do in-order traversal on the binary tree and store the value of the previous node for every node visited. Then, for every visited node, make this the next of the previous node and set the value of its previous node as previous. For this, first, you have to create a binary tree node that has data, left pointers and right pointers. Create a pointer to the head node of the doubly linked list and Initialize the previously visited node as NULL. This value is kept static so that the same value can be visited for all recursive calls. Then you create a simple recursive function to convert a given Binary tree to a Doubly Linked List.

An XOR linked list is one in which the next pointer of the very node stores the XOR of the previous and next node’s address. So you have to traverse the singly linked list and keep track of the previous node in a pointer. And while traversing through the list, change the next pointer of every node to XOR ( prev, current -> next )

It's no surprise that this one pops up often in linked list questions in the data structure. To delete a node from the linked list, you have to, first of all, find out the node previous to the node to be deleted and then change the next to the next node of the node to be deleted and free the space occupied by the node to be deleted. In this case, no extra space is needed, so the space complexity will be O(1), and the time complexity for the worst case is O(N) when the last element is to be deleted and that for the best case is O(1) when the first element is to be deleted.
