Search

Apache Spark Vs Hadoop - Head to Head Comparison

Over the past few years, data science has been one of the most sought-after multidisciplinary fields in the world today. It has established itself as an essential component of numerous industries such as marketing optimisation, risk management, marketing analytics. fraud detection, agriculture, etc. Understandably, this has lead to increasing demand for resorting to different approaches to data.When we talk about Apache Spark and Hadoop, it is really difficult to compare them with each other. We should be aware that both possess important features in the world of data science and big data. Hadoop excels over Apache Spark in some business applications, but when processing speed and ease of use is taken into account, Apache Spark has its own advantages that make it unique. The most important thing to note is, neither of these two can replace each other. However, since they are compatible with each other, they can be used together to produce very effective results for many big data applications.To analyse how important these two platforms are, there is a set of parameters with which we can discuss their efficiencies such as performance, ease of use, cost, data processing, compatibility, fault tolerance, scalability, and security. In this article, we will talk about Apache Spark and Hadoop individually for a bit, followed by stressing these parameters to better understand their significance in data science and big data.What is Hadoop?Hadoop, also known as Apache Hadoop, is a project formed by Apache.org that includes a software library and a framework that enables the usage of simple programming models to distributed processing of large data sets (big data) across computer clusters. Hadoop is quite efficient in scaling up from single computer systems to a lot of commodity system, offering substantial local storage. Due to this, Hadoop is considered as an omnipresent heavyweight in the big data analytics space. There are modules that work together to form the Hadoop framework. Here are the main Hadoop framework modules:Hadoop CommonHadoop Distributed File System (HDFS)Hadoop YARNHadoop MapReduceHadoop’s core is based on the above four modules followed by many others like Ambari, Avro, Cassandra, Hive, Pig, Oozie, Flume, and Sqoop. These are responsible for improving and extending Hadoop’s power to big data applications and large data set processing.Hadoop is utilised by numerous companies using big data sets and analytics and is the de facto model for big data applications. Initially, it was designed to take care of crawling and searching billions of web pages and collecting their information into a database, This resulted in Hadoop Distributed File System (HDFS), a distributed file system designed to run on commodity hardware and Hadoop MapReduce, a processing technique and a program model for distributed computing based on java.Hadoop comes handy when companies find data sets too large and complex to not being able to process the information in reasonably sufficient time. Since crawling and searching the web are text-based tasks, Hadoop MapReduce comes in handy as it is an exceptional text processing engine.An Overview of Apache SparkAn open-source distributed general-purpose cluster-computing framework, Apache Spark is considered as a fast and general engine for large-scale data processing. Compared to heavyweight Hadoop’s Big Data framework, Spark is very lightweight and faster by nearly 100 times. Although the facts say so, in fact, Spark runs up to 10 times faster on disk. Apart from that, it can perform batch processing but it really is good at streaming workloads, interactive queries, and machine-based learning.✓Streaming workloads✓Interactive queries✓Machine-based learning.Spark engine’s real-time data processing capability has a clear edge over Hadoop MapReduce’s disk-bound, batch processing one. Not only is Spark compatible with Hadoop and its modules, but it is also listed as a module on Hadoop’s project page. And because Spark can run in Hadoop clusters through YARN (Yet Another Resource Negotiator), it has its own page and a standalone mode. It can run as a Hadoop module and as a standalone solution which makes it difficult to make direct comparisons.Despite these facts, Spark is expected to diverge and might even replace Hadoop, especially in terms of faster access to processed data. Spark’s cluster computing feature enables it to compete with only Hadoop MapReduce and not the entire Hadoop ecosystem. That is why it can use HDFS despite not having its own distributed file system. To be concise, Hadoop MapReduce uses persistent storage whereas Spark uses Resilient Distributed Datasets (RDDs). What is RDD? This will be stressed in the Fault Tolerance section.The differences between Apache Spark and HadoopLet us have a look at the parameters using which we can compare the features of Apache Spark with Hadoop.Apache Spark vs Hadoop in a nutshellApache SparkParametersHadoopProcesses everything in memoryPerformance-wiseHadoop MapReduce uses batch processingHas user-friendly APIs for multiple programming languagesEase of UseHas add-ons such as Hive and PigSpark systems cost moreCostsHadoop MapReduce systems cost lesserShares every Hadoop MapReduce compatibilityCompatibilityCompliments Apache Spark seamlesslyHas GraphX, its own graph computation libraryData ProcessingHadoop MapReduce operates in sequential stepsSpark uses Resilient Distributed Datasets (RDDs)Fault ToleranceUtilises TaskTrackers to keep the JobTracker tickingComparatively lesser scalabilityScalabilityLarge ScalabilityProvides authentication via shared secret (password authentication)SecuritySupports Kerberos authenticationPerformance-wiseSpark is definitely faster when compared to Hadoop MapReduce. However, they cannot be compared because they perform processing in different styles. Spark is way faster because it processes everything in memory, even using disk for data that does not all fit into memory. The in-memory processing of Spark performs near real-time analytics for data from machine learning, log monitoring, marketing campaigns, Internet of Things sensors, security analytics, and social media sites. Hadoop MapReduce, on the other hand, utilises the batch-processing method so it understandably was never created for mesmerising speed. As a matter of fact, it was initially created to continuously gather information from websites during the times when data in or near real-time were not required.Ease of UseSpark does not only have a good reputation for its excellent performance, but it is also relatively easy to use along with providing additional support for languages like user-friendly APIs for Scala, Java, Python, and Spark SQL. Since Spark SQL is quite comparable to SQL 92, the user requires no additional knowledge to use it.Supported Languages:APIs for ScalaJavaPythonSpark SQL.Additionally, Spark is armed with an interactive mode to allow developers and users get instant feedback for questions and other actions. Hadoop MapReduce makes up for the lack of any interactive mode with add-ons like Hive and Pig, thus easing the workflow of Hadoop MapReduce.CostsApache Spark and Apache Hadoop MapReduce are both free open-source software.However, because Hadoop MapReduce’s processing is disk-based, it utilises standard volumes of memory. This results in companies buying faster disks with a lot of disk space to run Hadoop MapReduce. In stark contrast to this, Spark requires a lot of memory but compensates by settling with a standard amount of disk space running at standard speeds.Apache Spark and Apache Hadoop CompatibilityBoth Spark and Hadoop MapReduce are compatible with each other. Moreover, Spark shares every Hadoop MapReduce compatibility for data sources, file formats, and business intelligence tools via JDBC and ODBC.Data ProcessingHadoop MapReduce is a batch-processing engine. So how does it work? Well, it works in sequential steps.Step 1: Reads data from the clusterStep 2: Performs its operation on the dataStep 3: Writes the results back to the clusterStep 4: Reads updated data from the clusterStep 5: Performs the next data operationStep 6: Writes those results back to the clusterStep 7: Repeat.Spark performs in a similar manner, but the process doesn’t go on. It includes a single step and then to memory.Step 1: Reads data from the clusterStep 2: Performs its operation on the dataStep 3: Writes it back to the cluster.Moreover, Spark has GraphX, its own graph computation library. GraphX presents the same data as graphs and collections. Users have the option to use Resilient Distributed Datasets (RDDs) to transform and join graphs. This will be further addressed below in the Fault Tolerance section.Fault ToleranceThere are two different ways in which Hadoop MapReduce and Spark resolve the fault tolerance issue. Hadoop MapReduce utilises nodes like TaskTrackers to keep the JobTracker ticking. On the process being interrupted, the JobTracker reassigns every pending and in-progress operation to another TaskTracker. Although this process effectively provides fault tolerance, the completion times might get majorly affected even for operations having just a single failure.Spark, in this case, applies Resilient Distributed Datasets (RDDs), fault-tolerant collections of elements that can be operated side by side. References can be provided by RDDs in the form of datasets in an external storage system like shared filesystems, HDFS, HBase, or whatever available data source. This results in allowing a Hadoop InputFormat and Spark can create RDDs from every storage source that is backed by Hadoop. That covers local filesystems or one of those listed earlier.Below-mentioned is five main properties that an RDD possesses:A list of partitionsA function for computing each splitA list of dependencies on other RDDsA Partitioner for key-value RDDs by choice (provided that the RDD is hash-partitioned)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)The persistence of RDDs to cache a dataset in memory across operations enables the speeding up of future actions by possibly ten folds. The cache of Spark is fault-tolerant, it will recomputed automatically by making use of the original transformations provided any partition of an RDD is lost.ScalabilityIn terms of scaling up, both Hadoop MapReduce and Spark are on equal terms in using the HDFS. Reports say that Yahoo holds a 42,000 node Hadoop cluster with no bounds while the most comprehensive Spark cluster holds 8,000 nodes. However, in order to support output expectations, the cluster sizes are expected to grow along with that of big data.SecurityKerberos authentication, considered to be quite hectic to manage is supported by Hadoop. Nevertheless, companies have been assisted by third-party vendors to leverage Active Directory Kerberos and LDAP for authentication and also allow data encrypt for in-flight and data at rest. Access control lists (ACLs) a traditional file permissions model are supported by Hadoop while it provides Service Level Authorization for user control in job submission, resulting in clients having the right permissions without any fail.For Spark though, it presently offers somewhat inadequate security as it provides authentication via shared secret (password authentication). However, if the user runs Spark on HDFS, then it can utilise HDFS ACLs and file-level permissions. Moreover, running Spark on YARN will enable the latter to have the capacity of using Kerberos authentication. That is the security takeaway from using Spark.  ConclusionApache Spark and Apache Hadoop form the perfect combination for business applications. Where Hadoop MapReduce has been a revelation in the big data market for businesses requiring huge datasets to be brought under control by commodity systems, Apache Spark’s speed and comparative ease of use compliments the low-cost operation involving Hadoop MapReduce.Like we discussed at the beginning of this article that neither of these two can replace one another, Spark and Hadoop form a lethal and effective symbiotic partnership. While Hadoop has features like a distributed file system that Spark does not have, the latter presents real-time, in-memory processing for the required data sets. Both Hadoop and Spark form the perfect combination for the ideal big data scenario. Rest assured, in this situation, both working in the same team is what goes in favour of big data professionals.You would be interested to know that Knowledgehut offers world-class training for Apache Spark and Hadoop. Feel free to check these courses to enhance your knowledge about both Apache Spark and Hadoop.

Apache Spark Vs Hadoop - Head to Head Comparison

17K
Apache Spark Vs Hadoop - Head to Head Comparison

Over the past few years, data science has been one of the most sought-after multidisciplinary fields in the world today. It has established itself as an essential component of numerous industries such as marketing optimisation, risk management, marketing analytics. fraud detection, agriculture, etc. Understandably, this has lead to increasing demand for resorting to different approaches to data.

When we talk about Apache Spark and Hadoop, it is really difficult to compare them with each other. We should be aware that both possess important features in the world of data science and big data. Hadoop excels over Apache Spark in some business applications, but when processing speed and ease of use is taken into account, Apache Spark has its own advantages that make it unique. The most important thing to note is, neither of these two can replace each other. However, since they are compatible with each other, they can be used together to produce very effective results for many big data applications.

To analyse how important these two platforms are, there is a set of parameters with which we can discuss their efficiencies such as performance, ease of use, cost, data processing, compatibility, fault tolerance, scalability, and security. In this article, we will talk about Apache Spark and Hadoop individually for a bit, followed by stressing these parameters to better understand their significance in data science and big data.

What is Hadoop?

Hadoop

Hadoop, also known as Apache Hadoop, is a project formed by Apache.org that includes a software library and a framework that enables the usage of simple programming models to distributed processing of large data sets (big data) across computer clusters. Hadoop is quite efficient in scaling up from single computer systems to a lot of commodity system, offering substantial local storage. Due to this, Hadoop is considered as an omnipresent heavyweight in the big data analytics space. 

There are modules that work together to form the Hadoop framework. Here are the main Hadoop framework modules:

  • Hadoop Common
  • Hadoop Distributed File System (HDFS)
  • Hadoop YARN
  • Hadoop MapReduce

Hadoop’s core is based on the above four modules followed by many others like Ambari, Avro, Cassandra, Hive, Pig, Oozie, Flume, and Sqoop. These are responsible for improving and extending Hadoop’s power to big data applications and large data set processing.

Hadoop is utilised by numerous companies using big data sets and analytics and is the de facto model for big data applications. Initially, it was designed to take care of crawling and searching billions of web pages and collecting their information into a database, This resulted in Hadoop Distributed File System (HDFS), a distributed file system designed to run on commodity hardware and Hadoop MapReduce, a processing technique and a program model for distributed computing based on java.

Hadoop comes handy when companies find data sets too large and complex to not being able to process the information in reasonably sufficient time. Since crawling and searching the web are text-based tasks, Hadoop MapReduce comes in handy as it is an exceptional text processing engine.

An Overview of Apache Spark

Overview of Apache Spark

An open-source distributed general-purpose cluster-computing framework, Apache Spark is considered as a fast and general engine for large-scale data processing. Compared to heavyweight Hadoop’s Big Data framework, Spark is very lightweight and faster by nearly 100 times. Although the facts say so, in fact, Spark runs up to 10 times faster on disk. Apart from that, it can perform batch processing but it really is good at streaming workloads, interactive queries, and machine-based learning.

✓Streaming workloads

✓Interactive queries

✓Machine-based learning.

Spark engine’s real-time data processing capability has a clear edge over Hadoop MapReduce’s disk-bound, batch processing one. Not only is Spark compatible with Hadoop and its modules, but it is also listed as a module on Hadoop’s project page. And because Spark can run in Hadoop clusters through YARN (Yet Another Resource Negotiator), it has its own page and a standalone mode. It can run as a Hadoop module and as a standalone solution which makes it difficult to make direct comparisons.

Despite these facts, Spark is expected to diverge and might even replace Hadoop, especially in terms of faster access to processed data. Spark’s cluster computing feature enables it to compete with only Hadoop MapReduce and not the entire Hadoop ecosystem. That is why it can use HDFS despite not having its own distributed file system. To be concise, Hadoop MapReduce uses persistent storage whereas Spark uses Resilient Distributed Datasets (RDDs). What is RDD? This will be stressed in the Fault Tolerance section.

The differences between Apache Spark and Hadoop

Let us have a look at the parameters using which we can compare the features of Apache Spark with Hadoop.

Apache Spark vs Hadoop in a nutshell

Apache Spark
Parameters
Hadoop
Processes everything in memoryPerformance-wiseHadoop MapReduce uses batch processing
Has user-friendly APIs for multiple programming languagesEase of UseHas add-ons such as Hive and Pig
Spark systems cost moreCostsHadoop MapReduce systems cost lesser
Shares every Hadoop MapReduce compatibilityCompatibilityCompliments Apache Spark seamlessly
Has GraphX, its own graph computation libraryData ProcessingHadoop MapReduce operates in sequential steps
Spark uses Resilient Distributed Datasets (RDDs)Fault ToleranceUtilises TaskTrackers to keep the JobTracker ticking
Comparatively lesser scalabilityScalabilityLarge Scalability
Provides authentication via shared secret (password authentication)SecuritySupports Kerberos authentication

Performance-wise

Spark is definitely faster when compared to Hadoop MapReduce. However, they cannot be compared because they perform processing in different styles. Spark is way faster because it processes everything in memory, even using disk for data that does not all fit into memory. 

The in-memory processing of Spark performs near real-time analytics for data from machine learning, log monitoring, marketing campaigns, Internet of Things sensors, security analytics, and social media sites. Hadoop MapReduce, on the other hand, utilises the batch-processing method so it understandably was never created for mesmerising speed. As a matter of fact, it was initially created to continuously gather information from websites during the times when data in or near real-time were not required.

Ease of Use

Spark does not only have a good reputation for its excellent performance, but it is also relatively easy to use along with providing additional support for languages like user-friendly APIs for Scala, Java, Python, and Spark SQL. Since Spark SQL is quite comparable to SQL 92, the user requires no additional knowledge to use it.

Supported Languages:

  • APIs for Scala
  • Java
  • Python
  • Spark SQL.

Ease of Use

Additionally, Spark is armed with an interactive mode to allow developers and users get instant feedback for questions and other actions. Hadoop MapReduce makes up for the lack of any interactive mode with add-ons like Hive and Pig, thus easing the workflow of Hadoop MapReduce.

Costs

Apache Spark and Apache Hadoop MapReduce are both free open-source software.

However, because Hadoop MapReduce’s processing is disk-based, it utilises standard volumes of memory. This results in companies buying faster disks with a lot of disk space to run Hadoop MapReduce. In stark contrast to this, Spark requires a lot of memory but compensates by settling with a standard amount of disk space running at standard speeds.

Apache Spark and Apache Hadoop Compatibility

Both Spark and Hadoop MapReduce are compatible with each other. Moreover, Spark shares every Hadoop MapReduce compatibility for data sources, file formats, and business intelligence tools via JDBC and ODBC.

Apache Spark and Apache Hadoop Compatibility

Data Processing

Hadoop MapReduce is a batch-processing engine. So how does it work? Well, it works in sequential steps.

Step 1: Reads data from the cluster

Step 2: Performs its operation on the data

Step 3: Writes the results back to the cluster

Step 4: Reads updated data from the cluster

Step 5: Performs the next data operation

Step 6: Writes those results back to the cluster

Step 7: Repeat.

Spark performs in a similar manner, but the process doesn’t go on. It includes a single step and then to memory.

Step 1: Reads data from the cluster

Step 2: Performs its operation on the data

Step 3: Writes it back to the cluster.

Moreover, Spark has GraphX, its own graph computation library. GraphX presents the same data as graphs and collections. Users have the option to use Resilient Distributed Datasets (RDDs) to transform and join graphs. This will be further addressed below in the Fault Tolerance section.

Fault Tolerance

There are two different ways in which Hadoop MapReduce and Spark resolve the fault tolerance issue. Hadoop MapReduce utilises nodes like TaskTrackers to keep the JobTracker ticking. On the process being interrupted, the JobTracker reassigns every pending and in-progress operation to another TaskTracker. Although this process effectively provides fault tolerance, the completion times might get majorly affected even for operations having just a single failure.

Spark, in this case, applies Resilient Distributed Datasets (RDDs), fault-tolerant collections of elements that can be operated side by side. References can be provided by RDDs in the form of datasets in an external storage system like shared filesystems, HDFS, HBase, or whatever available data source. This results in allowing a Hadoop InputFormat and Spark can create RDDs from every storage source that is backed by Hadoop. That covers local filesystems or one of those listed earlier.

Below-mentioned is five main properties that an RDD possesses:

  1. A list of partitions
  2. A function for computing each split
  3. A list of dependencies on other RDDs
  4. A Partitioner for key-value RDDs by choice (provided that the RDD is hash-partitioned)
  5. Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)

The persistence of RDDs to cache a dataset in memory across operations enables the speeding up of future actions by possibly ten folds. The cache of Spark is fault-tolerant, it will recomputed automatically by making use of the original transformations provided any partition of an RDD is lost.

Scalability

In terms of scaling up, both Hadoop MapReduce and Spark are on equal terms in using the HDFS. Reports say that Yahoo holds a 42,000 node Hadoop cluster with no bounds while the most comprehensive Spark cluster holds 8,000 nodes. However, in order to support output expectations, the cluster sizes are expected to grow along with that of big data.

Security

Kerberos authentication, considered to be quite hectic to manage is supported by Hadoop. Nevertheless, companies have been assisted by third-party vendors to leverage Active Directory Kerberos and LDAP for authentication and also allow data encrypt for in-flight and data at rest. Access control lists (ACLs) a traditional file permissions model are supported by Hadoop while it provides Service Level Authorization for user control in job submission, resulting in clients having the right permissions without any fail.

For Spark though, it presently offers somewhat inadequate security as it provides authentication via shared secret (password authentication). However, if the user runs Spark on HDFS, then it can utilise HDFS ACLs and file-level permissions. Moreover, running Spark on YARN will enable the latter to have the capacity of using Kerberos authentication. That is the security takeaway from using Spark.  

ConclusionApache Spark Vs Hadoop

Apache Spark and Apache Hadoop form the perfect combination for business applications. Where Hadoop MapReduce has been a revelation in the big data market for businesses requiring huge datasets to be brought under control by commodity systems, Apache Spark’s speed and comparative ease of use compliments the low-cost operation involving Hadoop MapReduce.

Like we discussed at the beginning of this article that neither of these two can replace one another, Spark and Hadoop form a lethal and effective symbiotic partnership. While Hadoop has features like a distributed file system that Spark does not have, the latter presents real-time, in-memory processing for the required data sets. Both Hadoop and Spark form the perfect combination for the ideal big data scenario. Rest assured, in this situation, both working in the same team is what goes in favour of big data professionals.

You would be interested to know that Knowledgehut offers world-class training for Apache Spark and Hadoop. Feel free to check these courses to enhance your knowledge about both Apache Spark and Hadoop.

KnowledgeHut

KnowledgeHut

Author

KnowledgeHut is an outcome-focused global ed-tech company. We help organizations and professionals unlock excellence through skills development. We offer training solutions under the people and process, data science, full-stack development, cybersecurity, future technologies and digital transformation verticals.
Website : https://www.knowledgehut.com

Join the Discussion

Your email address will not be published. Required fields are marked *

2 comments

Shaker 20 Aug 2019

great article nice to stay here on this website.Thanks for sharing this information with us

Jayadeep Sai Kunchay 20 Aug 2019

Great article. Thank you for sharing this useful information.

Suggested Blogs

How to install Apache Spark on Windows?

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.In this document, we will cover the installation procedure of Apache Spark on Windows 10 operating systemPrerequisitesThis guide assumes that you are using Windows 10 and the user had admin permissions.System requirements:Windows 10 OSAt least 4 GB RAMFree space of at least 20 GBInstallation ProcedureStep 1: Go to the below official download page of Apache Spark and choose the latest release. For the package type, choose ‘Pre-built for Apache Hadoop’.The page will look like below.Step 2:  Once the download is completed unzip the file, to unzip the file using WinZip or WinRAR or 7-ZIP.Step 3: Create a folder called Spark under your user Directory like below and copy paste the content from the unzipped file.C:\Users\\SparkIt looks like below after copy-pasting into the Spark directory.Step 4: Go to the conf folder and open log file called, log4j.properties. template. Change INFO to WARN (It can be ERROR to reduce the log). This and next steps are optional.Remove. template so that Spark can read the file.Before removing. template all files look like below.After removing. template extension, files will look like belowStep 5: Now we need to configure path.Go to Control Panel -> System and Security -> System -> Advanced Settings -> Environment VariablesAdd below new user variable (or System variable) (To add new user variable click on New button under User variable for )Click OK.Add %SPARK_HOME%\bin to the path variable.Click OK.Step 6: Spark needs a piece of Hadoop to run. For Hadoop 2.7, you need to install winutils.exe.You can find winutils.exe from below pageDownload it.Step 7: Create a folder called winutils in C drive and create a folder called bin inside. Then, move the downloaded winutils file to the bin folder.C:\winutils\binAdd the user (or system) variable %HADOOP_HOME% like SPARK_HOME.Click OK.Step 8: To install Apache Spark, Java should be installed on your computer. If you don’t have java installed in your system. Please follow the below processJava Installation Steps:Go to the official Java site mentioned below  the page.Accept Licence Agreement for Java SE Development Kit 8u201Download jdk-8u201-windows-x64.exe fileDouble Click on Downloaded .exe file, you will the window shown below.Click Next.Then below window will be displayed.Click Next.Below window will be displayed after some process.Click Close.Test Java Installation:Open Command Line and type java -version, then it should display installed version of JavaYou should also check JAVA_HOME and path of %JAVA_HOME%\bin included in user variables (or system variables)1. In the end, the environment variables have 3 new paths (if you need to add Java path, otherwise SPARK_HOME and HADOOP_HOME).2. Create c:\tmp\hive directory. This step is not necessary for later versions of Spark. When you first start Spark, it creates the folder by itself. However, it is the best practice to create a folder.C:\tmp\hiveTest Installation:Open command line and type spark-shell, you get the result as below.We have completed spark installation on Windows system. Let’s create RDD and     Data frameWe create one RDD and Data frame then will end up.1. We can create RDD in 3 ways, we will use one way to create RDD.Define any list then parallelize it. It will create RDD. Below is code and copy paste it one by one on the command line.val list = Array(1,2,3,4,5) val rdd = sc.parallelize(list)Above will create RDD.2. Now we will create a Data frame from RDD. Follow the below steps to create Dataframe.import spark.implicits._ val df = rdd.toDF("id")Above code will create Dataframe with id as a column.To display the data in Dataframe use below command.Df.show()It will display the below output.How to uninstall Spark from Windows 10 System: Please follow below steps to uninstall spark on Windows 10.Remove below System/User variables from the system.SPARK_HOMEHADOOP_HOMETo remove System/User variables please follow below steps:Go to Control Panel -> System and Security -> System -> Advanced Settings -> Environment Variables, then find SPARK_HOME and HADOOP_HOME then select them, and press DELETE button.Find Path variable Edit -> Select %SPARK_HOME%\bin -> Press DELETE ButtonSelect % HADOOP_HOME%\bin -> Press DELETE Button -> OK ButtonOpen Command Prompt the type spark-shell then enter, now we get an error. Now we can confirm that Spark is successfully uninstalled from the System.
9272
How to install Apache Spark on Windows?

Apache Spark is a fast and general-purpose cluster... Read More

5 Big Data Challenges in 2020

The year 2019 saw some enthralling changes in volume and variety of data across businesses, worldwide. The surge in data generation is only going to continue. Foresighted enterprises are the ones who will be able to leverage this data for maximum profitability through data processing and handling techniques. With the rise in opportunities related to Big Data, challenges are also bound to increase.Below are the 5 major Big Data challenges that enterprises face in 2020:1. The Need for More Trained ProfessionalsResearch shows that since 2018, 2.5 quintillion bytes (or 2.5 exabytes) of information is being generated every day. The previous two years have seen significantly more noteworthy increments in the quantity of streams, posts, searches and writings, which have cumulatively produced an enormous amount of data. Additionally, this number is only growing by the day. A study has predicted that by 2025, each person will be making a bewildering 463 exabytes of information every day.A report by Indeed, showed a 29 percent surge in the demand for data scientists yearly and a 344 percent increase since 2013 till date. However, the searches by job seekers skilled in data science continue to grow at a snail’s pace at 14 percent. In August 2018, LinkedIn reported claimed that US alone needs 151,717 professionals with data science skills. This along with a 15 percent discrepancy between job postings and job searches on Indeed, makes it quite evident that the demand for data scientists outstrips supply. The greatest data processing challenge of 2020 is the lack of qualified data scientists with the skill set and expertise to handle this gigantic volume of data.2. Inability to process large volumes of dataOut of the 2.5 quintillion data produced, only 60 percent workers spend days on it to make sense of it. A major portion of raw data is usually irrelevant. And about 43 percent companies still struggle or aren’t fully satisfied with the filtered data. 3. Syncing Across Data SourcesOnce you import data into Big Data platforms you may also realize that data copies migrated from a wide range of sources on different rates and schedules can rapidly get out of the synchronization with the originating system. This implies two things, one, the data coming from one source is out of date when compared to another source. Two, it creates a commonality of data definitions, concepts, metadata and the like. The traditional data management and data warehouses, and the sequence of data transformation, extraction and migration- all arise a situation in which there are risks for data to become unsynchronized.4. Lack of adequate data governanceData collected from multiple sources should have some correlation to each other so that it can be considered usable by enterprises. In a recent Big Data Maturity Survey, the lack of stringent data governance was recognized the fastest-growing area of concern. Organizations often have to setup the right personnel, policies and technology to ensure that data governance is achieved. This itself could be a challenge for a lot of enterprises.5. Threat of compromised data securityWhile Big Data opens plenty of opportunities for organizations to grow their businesses, there’s an inherent risk of data security. Some of the biggest cyber threats to big players like Panera Bread, Facebook, Equifax and Marriot have brought to light the fact that literally no one is immune to cyberattacks. As far as Big Data is concerned, data security should be high on their priorities as most modern businesses are vulnerable to fake data generation, especially if cybercriminals have access to the database of a business. However, regulating access is one of the primary challenges for companies who frequently work with large sets of data. Even the way Big Data is designed makes it harder for enterprises to ensure data security. Working with data distributed across multiple systems makes it both cumbersome and risky.Overcoming Big Data challenges in 2020Whether it’s ensuring data governance and security or hiring skilled professionals, enterprises should leave no stone unturned when it comes to overcoming the above Big Data challenges. Several courses and online certifications are available to specialize in tackling each of these challenges in Big Data. Training existing personnel with the analytical tools of Big Data will help businesses unearth insightful data about customer. Frameworks related to Big Data can help in qualitative analysis of the raw information.
1314
5 Big Data Challenges in 2020

The year 2019 saw some enthralling changes in volu... Read More

Top In-demand Jobs During Coronavirus Pandemic

With the global positive cases for the COVID-19 reaching over two crores globally, and over 281,000 jobs lost in the US alone, the impact of the coronavirus pandemic already has been catastrophic for workers worldwide. While tourism and the supply chain industries are the hardest hit, the healthcare and transportation sectors have faced less severe heat. According to a Goldman Sachs report, the number of unemployed individuals in the US can climb up to 2.25 million. However, despite these alarming figures, the NBC News states that this is merely 20% of the total unemployment rate of the US. Job portals like LinkedIn, Shine, and Monster are also witnessing continued hiring for specific roles. So, what are these roles defining the pandemic job sector? Top In-demand Jobs During Coronavirus Pandemic Healthcare specialist For obvious reasons, the demand for healthcare specialists has spiked up globally. This includes doctors, nurses, surgical technologists, virologists, diagnostic technicians, pharmacists, and medical equipment providers. Logistics personnel This largely involves shipping and delivery companies that include a broad profile of employees, right from warehouse managers, transportation-oriented job roles, and packaging and fulfillment jobs. Presently, Amazon is hiring over 1,00,000 workers for its operations while making amends in the salaries and timings to accommodate the situation.  Online learning companies Teaching and learning are at the forefront of the current global scenario. With most of the individuals either working from home or anticipating a loss of a job, several of them are resorting to upskilling or attaining new skills to embrace broader job roles. The demand for teachers or trainers for these courses and academic counselors has also shot up. Remote learning facilities and online upskilling have made these courses much more accessible to individuals as well.  Remote meeting and communication companies The entirety of remote working is heavily dependant on communication and meeting tools such as Zoom, Slack, and Microsoft teams. The efficiency of these tools and the effectivity of managing projects with remote communication has enabled several industries to sustain global pandemic. Even project management is taking an all-new shape thanks to these modern tools. Moreover, several schools are also relying on these tools to continue education through online classes.  Psychologists/Mental health-related businesses Many companies and individuals are seeking help to cope up with the undercurrent. This has created a surge in the demand for psychologists. Businesses like PwC and Starbucks have introduced/enhanced their mental health coaching. Mental health and wellness apps like Headspace have seen a 400% increase in the demand from top companies like Adobe and GE.  Data analysts Hiring companies like Shine have seen a surge in the hiring of data analysts. The simple reason being that there is a constant demand for information about the coronavirus, its status, its impact on the global economy, different markets, and many other industries. Companies are also hiring data analysts rapidly to study current customer behavior and reach out to public sentiments.  How to find a job during the coronavirus pandemicWhether you are looking for a job change, have already faced the heat of the coronavirus, or are at the risk of losing your job, here are some ways to stay afloat despite the trying times.  Be proactive on job portals, especially professional networking sites like LinkedIn to expand your network Practise phone and video job interviews Expand your work portfolio by on-boarding more freelance projects Pick up new skills by leveraging on the online courses available  Stay focused on your current job even in uncertain times Job security is of paramount importance during a global crisis like this. Andrew Seaman, an editor at LinkedIn notes that recruiters are going by the ‘business as usual approach’, despite concerns about COVID-19. The only change, he remarks, is that the interviews may be conducted over a video call, rather than in person. If the outbreak is not contained soon enough though, hiring may eventually take a hit. 
8536
Top In-demand Jobs During Coronavirus Pandemic

With the global positive cases for the COVID-19 re... Read More