Search

Best ways to learn Apache Spark

If you ask any industry expert what language should you learn for Big Data? You will get an obvious reply to learn Apache Spark. Apache Spark is widely considered as the future of the Big Data industry. Since Apache Spark has stepped into Big data market, it has gained a lot of recognition for itself. Today, most of the cutting-edge companies like Apple, Facebook, Netflix, and Uber, etc. have deployed Spark at massive scale. In this blog post, we will understand why one should learn Apache Spark? And several ways to learn it. Apache Spark is a powerful open-source framework for the processing of large datasets. It is the most successful projects in the Apache software foundation. Apache Spark basically designed for fast computation, also which runs faster than Hadoop. Apache Spark can collectively process huge amount of data present in clusters over multiple nodes. The main feature of Apache Spark is its in-memory cluster computing that increases the processing speed of an application.Why You Should Learn Apache SparkApache Spark has become the most popular unified analytics engine for Big Data and Machine Learning. Enterprises are widely utilizing Spark which in turn is increasing demand for Apache Spark developers. Apache Spark developers are the ones earning the highest salary. IT professionals can leverage this upcoming skill set gap by pursuing a certification in Apache Spark. A developer with expertise in Apache Spark skills can earn an average salary of $78K as per Payscale. It is the right time for you to learn Apache Spark as there is a very high demand for Spark developers chances of getting a job is high.Here are the reasons why you should learn Apache Spark today:In order to go with the growing demand for Apache SparkTo fulfill the demands for Spark developersTo get benefits of existing big data investmentsResources to learn ReactTo learn Spark, you can refer to Spark’s website. There are multiple resources you will find to learn Apache Spark, from books, blogs, online videos, courses, tutorials, etc. With these multiple resources available today, you might be in the dilemma of choosing the best resource, especially in this fast-paced and swiftly evolving industry.BooksCertificationsVideosTutorials, Blogs, and TalksHands-on Exercises 1. BooksWhen was the last time you read a book? Do you have reading habits? If not, it’s the time to read the books. Reading has a significant number of benefits. Those aren’t fans of books might miss out the importance of Apache Spark. To learn Apache Spark, you can skim through the best Apache Spark books given below.Apache Spark in 24 hours is a perfect book for beginners which comprises 592 pages covering various topics. An excellent book to learn in a very short span of time. Apart from this, there are also books which will help you master.Here is the list of top books to learn Apache Spark:Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden KarauAdvanced Analytics with Spark by Sandy Ryza, Uri Laserson, Sean Owen and Josh WillsMastering Apache Spark by Mike FramptonSpark: The Definitive Guide – Big Data Processing Made SimpleSpark GraphX in ActionBig Data Analytics with SparkThese are the various Apache Spark books meant for you to learn. These books include for beginners and others for the advanced level professionals.2. Apache Spark Training and CertificationsOne more way to learn Apache Spark is through taking up training. Apache Spark Training will boost your knowledge and also help you learn from experience. You will be certified once you are done with training. Getting this certification will help you stand out of the crowd. You will also gain hands-on skills and knowledge in developing Spark applications through industry-based real-time projects.3. Videos:Videos are really good resources to help you learn Apache Spark. Following are the few videos will help you understand Apache Spark.Overview of SparkIntro to Spark - Brian ClapperAdvanced Spark Analytics - Sameer FarooquiSpark Summit VideosVideos from Spark Summit 2014, San Francisco, June 30 - July 2, 2013Full agenda with links to all videos and slidesTraining videos and slidesVideos from Spark Summit 2013, San Francisco, Dec 2-3-2013Full agenda with links to all videos and slidesYouTube playist of all KeynotesYouTube playist of Track A (Spark Applications)YouTube playist of Track B (Spark Deployment, Scheduling & Perf, Related projects)YouTube playist of the Training Day (i.e. the 2nd day of the summit)You can learn more on Apache Spark YouTube Channel for videos from Spark events. 4. Tutorials, Blogs, and TalksUsing Parquet and Scrooge with Spark — Scala-friendly Parquet and Avro usage tutorial from Ooyala's Evan ChanUsing Spark with MongoDB — by Sampo Niskanen from WellmoSpark Summit 2013 — contained 30 talks about Spark use cases, available as slides and videosA Powerful Big Data Trio: Spark, Parquet and Avro — Using Parquet in Spark by Matt MassieReal-time Analytics with Cassandra, Spark, and Shark — Presentation by Evan Chan from Ooyala at 2013 Cassandra SummitRun Spark and Shark on Amazon Elastic MapReduce — Article by Amazon Elastic MapReduce team member Parviz DeyhimSpark, an alternative for fast data analytics — IBM Developer Works article by M. Tim Jones 5. Hands-on ExercisesHands-on exercises from Spark Summit 2014 - These exercises will guide you to install Spark on your laptop and learn basic concepts.Hands-on exercises from Spark Summit 2013 - These exercises will help you launch a small EC2 cluster, load a dataset, and query it with Spark, Spark Streaming, and MLlib.So these were the best resources to learn Apache Spark. Hope you found what you were looking for. Wish you a Happy Learning!
Rated 4.5/5 based on 1 customer reviews

Best ways to learn Apache Spark

9K
Best ways to learn Apache Spark

If you ask any industry expert what language should you learn for Big Data? You will get an obvious reply to learn Apache Spark. Apache Spark is widely considered as the future of the Big Data industry. Since Apache Spark has stepped into Big data market, it has gained a lot of recognition for itself. Today, most of the cutting-edge companies like Apple, Facebook, Netflix, and Uber, etc. have deployed Spark at massive scale. In this blog post, we will understand why one should learn Apache Spark? And several ways to learn it. 

Apache Spark is a powerful open-source framework for the processing of large datasetsIt is the most successful projects in the Apache software foundation. Apache Spark basically designed for fast computation, also which runs faster than Hadoop. Apache Spark can collectively process huge amount of data present in clusters over multiple nodes. The main feature of Apache Spark is its in-memory cluster computing that increases the processing speed of an application.

Why You Should Learn Apache Spark

Apache Spark has become the most popular unified analytics engine for Big Data and Machine Learning. Enterprises are widely utilizing Spark which in turn is increasing demand for Apache Spark developers. Apache Spark developers are the ones earning the highest salary. IT professionals can leverage this upcoming skill set gap by pursuing a certification in Apache Spark. A developer with expertise in Apache Spark skills can earn an average salary of $78K as per Payscale. It is the right time for you to learn Apache Spark as there is a very high demand for Spark developers chances of getting a job is high.

Here are the reasons why you should learn Apache Spark today:

  • In order to go with the growing demand for Apache Spark
  • To fulfill the demands for Spark developers
  • To get benefits of existing big data investments

Resources to learn React

To learn Spark, you can refer to Spark’s website. There are multiple resources you will find to learn Apache Spark, from books, blogs, online videos, courses, tutorials, etc. With these multiple resources available today, you might be in the dilemma of choosing the best resource, especially in this fast-paced and swiftly evolving industry.

  • Books
  • Certifications
  • Videos
  • Tutorials, Blogs, and Talks
  • Hands-on Exercises

 1. Books

When was the last time you read a book? Do you have reading habits? If not, it’s the time to read the books. Reading has a significant number of benefits. Those aren’t fans of books might miss out the importance of Apache Spark. To learn Apache Spark, you can skim through the best Apache Spark books given below.

Apache Spark in 24 hours is a perfect book for beginners which comprises 592 pages covering various topics. An excellent book to learn in a very short span of time. Apart from this, there are also books which will help you master.

Here is the list of top books to learn Apache Spark:

  • Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden Karau
  • Advanced Analytics with Spark by Sandy Ryza, Uri Laserson, Sean Owen and Josh Wills
  • Mastering Apache Spark by Mike Frampton
  • Spark: The Definitive Guide – Big Data Processing Made Simple
  • Spark GraphX in Action
  • Big Data Analytics with Spark

These are the various Apache Spark books meant for you to learn. These books include for beginners and others for the advanced level professionals.

2. Apache Spark Training and Certifications

One more way to learn Apache Spark is through taking up training. Apache Spark Training will boost your knowledge and also help you learn from experience. You will be certified once you are done with training. Getting this certification will help you stand out of the crowd. You will also gain hands-on skills and knowledge in developing Spark applications through industry-based real-time projects.

3. Videos:

Videos are really good resources to help you learn Apache Spark. Following are the few videos will help you understand Apache Spark.

Spark Summit Videos

Videos from Spark Summit 2014, San Francisco, June 30 - July 2, 2013

Videos from Spark Summit 2013, San Francisco, Dec 2-3-2013

You can learn more on Apache Spark YouTube Channel for videos from Spark events.

 4. Tutorials, Blogs, and Talks

 5. Hands-on Exercises

So these were the best resources to learn Apache Spark. Hope you found what you were looking for. Wish you a Happy Learning!

KnowledgeHut

KnowledgeHut

Author

KnowledgeHut is a fast growing Management Consulting and Training firm that is a source of Intelligent Information support for businesses and professionals across the globe.


Website : https://www.knowledgehut.com/

Join the Discussion

Your email address will not be published. Required fields are marked *

1 comments

surendra babu 05 Aug 2019

This blog is used me to understand how to learn and why to learn the Spark thanks...

Suggested Blogs

Apache Spark Vs Hadoop - Head to Head Comparison

Over the past few years, data science has been one of the most sought-after multidisciplinary fields in the world today. It has established itself as an essential component of numerous industries such as marketing optimisation, risk management, marketing analytics. fraud detection, agriculture, etc. Understandably, this has lead to increasing demand for resorting to different approaches to data.When we talk about Apache Spark and Hadoop, it is really difficult to compare them with each other. We should be aware that both possess important features in the world of data science and big data. Hadoop excels over Apache Spark in some business applications, but when processing speed and ease of use is taken into account, Apache Spark has its own advantages that make it unique. The most important thing to note is, neither of these two can replace each other. However, since they are compatible with each other, they can be used together to produce very effective results for many big data applications.To analyse how important these two platforms are, there is a set of parameters with which we can discuss their efficiencies such as performance, ease of use, cost, data processing, compatibility, fault tolerance, scalability, and security. In this article, we will talk about Apache Spark and Hadoop individually for a bit, followed by stressing these parameters to better understand their significance in data science and big data.What is Hadoop?Hadoop, also known as Apache Hadoop, is a project formed by Apache.org that includes a software library and a framework that enables the usage of simple programming models to distributed processing of large data sets (big data) across computer clusters. Hadoop is quite efficient in scaling up from single computer systems to a lot of commodity system, offering substantial local storage. Due to this, Hadoop is considered as an omnipresent heavyweight in the big data analytics space. There are modules that work together to form the Hadoop framework. Here are the main Hadoop framework modules:Hadoop CommonHadoop Distributed File System (HDFS)Hadoop YARNHadoop MapReduceHadoop’s core is based on the above four modules followed by many others like Ambari, Avro, Cassandra, Hive, Pig, Oozie, Flume, and Sqoop. These are responsible for improving and extending Hadoop’s power to big data applications and large data set processing.Hadoop is utilised by numerous companies using big data sets and analytics and is the de facto model for big data applications. Initially, it was designed to take care of crawling and searching billions of web pages and collecting their information into a database, This resulted in Hadoop Distributed File System (HDFS), a distributed file system designed to run on commodity hardware and Hadoop MapReduce, a processing technique and a program model for distributed computing based on java.Hadoop comes handy when companies find data sets too large and complex to not being able to process the information in reasonably sufficient time. Since crawling and searching the web are text-based tasks, Hadoop MapReduce comes in handy as it is an exceptional text processing engine.An Overview of Apache SparkAn open-source distributed general-purpose cluster-computing framework, Apache Spark is considered as a fast and general engine for large-scale data processing. Compared to heavyweight Hadoop’s Big Data framework, Spark is very lightweight and faster by nearly 100 times. Although the facts say so, in fact, Spark runs up to 10 times faster on disk. Apart from that, it can perform batch processing but it really is good at streaming workloads, interactive queries, and machine-based learning.✓Streaming workloads✓Interactive queries✓Machine-based learning.Spark engine’s real-time data processing capability has a clear edge over Hadoop MapReduce’s disk-bound, batch processing one. Not only is Spark compatible with Hadoop and its modules, but it is also listed as a module on Hadoop’s project page. And because Spark can run in Hadoop clusters through YARN (Yet Another Resource Negotiator), it has its own page and a standalone mode. It can run as a Hadoop module and as a standalone solution which makes it difficult to make direct comparisons.Despite these facts, Spark is expected to diverge and might even replace Hadoop, especially in terms of faster access to processed data. Spark’s cluster computing feature enables it to compete with only Hadoop MapReduce and not the entire Hadoop ecosystem. That is why it can use HDFS despite not having its own distributed file system. To be concise, Hadoop MapReduce uses persistent storage whereas Spark uses Resilient Distributed Datasets (RDDs). What is RDD? This will be stressed in the Fault Tolerance section.The differences between Apache Spark and HadoopLet us have a look at the parameters using which we can compare the features of Apache Spark with Hadoop.Apache Spark vs Hadoop in a nutshellApache SparkParametersHadoopProcesses everything in memoryPerformance-wiseHadoop MapReduce uses batch processingHas user-friendly APIs for multiple programming languagesEase of UseHas add-ons such as Hive and PigSpark systems cost moreCostsHadoop MapReduce systems cost lesserShares every Hadoop MapReduce compatibilityCompatibilityCompliments Apache Spark seamlesslyHas GraphX, its own graph computation libraryData ProcessingHadoop MapReduce operates in sequential stepsSpark uses Resilient Distributed Datasets (RDDs)Fault ToleranceUtilises TaskTrackers to keep the JobTracker tickingComparatively lesser scalabilityScalabilityLarge ScalabilityProvides authentication via shared secret (password authentication)SecuritySupports Kerberos authenticationPerformance-wiseSpark is definitely faster when compared to Hadoop MapReduce. However, they cannot be compared because they perform processing in different styles. Spark is way faster because it processes everything in memory, even using disk for data that does not all fit into memory. The in-memory processing of Spark performs near real-time analytics for data from machine learning, log monitoring, marketing campaigns, Internet of Things sensors, security analytics, and social media sites. Hadoop MapReduce, on the other hand, utilises the batch-processing method so it understandably was never created for mesmerising speed. As a matter of fact, it was initially created to continuously gather information from websites during the times when data in or near real-time were not required.Ease of UseSpark does not only have a good reputation for its excellent performance, but it is also relatively easy to use along with providing additional support for languages like user-friendly APIs for Scala, Java, Python, and Spark SQL. Since Spark SQL is quite comparable to SQL 92, the user requires no additional knowledge to use it.Supported Languages:APIs for ScalaJavaPythonSpark SQL.Additionally, Spark is armed with an interactive mode to allow developers and users get instant feedback for questions and other actions. Hadoop MapReduce makes up for the lack of any interactive mode with add-ons like Hive and Pig, thus easing the workflow of Hadoop MapReduce.CostsApache Spark and Apache Hadoop MapReduce are both free open-source software.However, because Hadoop MapReduce’s processing is disk-based, it utilises standard volumes of memory. This results in companies buying faster disks with a lot of disk space to run Hadoop MapReduce. In stark contrast to this, Spark requires a lot of memory but compensates by settling with a standard amount of disk space running at standard speeds.Apache Spark and Apache Hadoop CompatibilityBoth Spark and Hadoop MapReduce are compatible with each other. Moreover, Spark shares every Hadoop MapReduce compatibility for data sources, file formats, and business intelligence tools via JDBC and ODBC.Data ProcessingHadoop MapReduce is a batch-processing engine. So how does it work? Well, it works in sequential steps.Step 1: Reads data from the clusterStep 2: Performs its operation on the dataStep 3: Writes the results back to the clusterStep 4: Reads updated data from the clusterStep 5: Performs the next data operationStep 6: Writes those results back to the clusterStep 7: Repeat.Spark performs in a similar manner, but the process doesn’t go on. It includes a single step and then to memory.Step 1: Reads data from the clusterStep 2: Performs its operation on the dataStep 3: Writes it back to the cluster.Moreover, Spark has GraphX, its own graph computation library. GraphX presents the same data as graphs and collections. Users have the option to use Resilient Distributed Datasets (RDDs) to transform and join graphs. This will be further addressed below in the Fault Tolerance section.Fault ToleranceThere are two different ways in which Hadoop MapReduce and Spark resolve the fault tolerance issue. Hadoop MapReduce utilises nodes like TaskTrackers to keep the JobTracker ticking. On the process being interrupted, the JobTracker reassigns every pending and in-progress operation to another TaskTracker. Although this process effectively provides fault tolerance, the completion times might get majorly affected even for operations having just a single failure.Spark, in this case, applies Resilient Distributed Datasets (RDDs), fault-tolerant collections of elements that can be operated side by side. References can be provided by RDDs in the form of datasets in an external storage system like shared filesystems, HDFS, HBase, or whatever available data source. This results in allowing a Hadoop InputFormat and Spark can create RDDs from every storage source that is backed by Hadoop. That covers local filesystems or one of those listed earlier.Below-mentioned is five main properties that an RDD possesses:A list of partitionsA function for computing each splitA list of dependencies on other RDDsA Partitioner for key-value RDDs by choice (provided that the RDD is hash-partitioned)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)The persistence of RDDs to cache a dataset in memory across operations enables the speeding up of future actions by possibly ten folds. The cache of Spark is fault-tolerant, it will recomputed automatically by making use of the original transformations provided any partition of an RDD is lost.ScalabilityIn terms of scaling up, both Hadoop MapReduce and Spark are on equal terms in using the HDFS. Reports say that Yahoo holds a 42,000 node Hadoop cluster with no bounds while the most comprehensive Spark cluster holds 8,000 nodes. However, in order to support output expectations, the cluster sizes are expected to grow along with that of big data.SecurityKerberos authentication, considered to be quite hectic to manage is supported by Hadoop. Nevertheless, companies have been assisted by third-party vendors to leverage Active Directory Kerberos and LDAP for authentication and also allow data encrypt for in-flight and data at rest. Access control lists (ACLs) a traditional file permissions model are supported by Hadoop while it provides Service Level Authorization for user control in job submission, resulting in clients having the right permissions without any fail.For Spark though, it presently offers somewhat inadequate security as it provides authentication via shared secret (password authentication). However, if the user runs Spark on HDFS, then it can utilise HDFS ACLs and file-level permissions. Moreover, running Spark on YARN will enable the latter to have the capacity of using Kerberos authentication. That is the security takeaway from using Spark.  ConclusionApache Spark and Apache Hadoop form the perfect combination for business applications. Where Hadoop MapReduce has been a revelation in the big data market for businesses requiring huge datasets to be brought under control by commodity systems, Apache Spark’s speed and comparative ease of use compliments the low-cost operation involving Hadoop MapReduce.Like we discussed at the beginning of this article that neither of these two can replace one another, Spark and Hadoop form a lethal and effective symbiotic partnership. While Hadoop has features like a distributed file system that Spark does not have, the latter presents real-time, in-memory processing for the required data sets. Both Hadoop and Spark form the perfect combination for the ideal big data scenario. Rest assured, in this situation, both working in the same team is what goes in favour of big data professionals.You would be interested to know that Knowledgehut offers world-class training for Apache Spark and Hadoop. Feel free to check these courses to enhance your knowledge about both Apache Spark and Hadoop.
Rated 4.5/5 based on 2 customer reviews
6639
Apache Spark Vs Hadoop - Head to Head Comparison

Over the past few years, data science has been one... Read More

Apache Spark Vs Apache Storm - Head To Head Comparison

In today’s world, the need for real-time data streaming is growing exponentially due to the increase in real-time data. With streaming technologies leading the world of Big Data, it might be tough for the users to choose the appropriate real-time streaming platform. Two of the most popular real-time technologies that might consider for opting are Apache Spark and Apache Storm. One major key difference between the frameworks Spark and Storm is that Spark performs Data-Parallel computations, whereas Storm occupies Task-Parallel computations. Read along to know more differences between Apache Spark and Apache Storm, and understand which one is better to adopt on the basis of different features. Comparison Table: Apache Spark Vs. Apache StormSr. NoParameterApache SparkApache Storm1.Processing  ModelBatch ProcessingMicro-batch processing2.Programming LanguageSupports lesser languages like Java, Scala.Support smultiple languages, such as Scala, Java, Clojure.3.Stream SourcesHDFSSpout4.MessagingAkka, NettyZeroMQ, Netty5.Resource ManagementYarn and Meson are responsible.Yarn and Mesos are responsible.6.Low LatencyHigher latency as compared to SparkBetter latency with lesser constraints7.Stream PrimitivesDStreamTuple, Partition8.Development CostSame code can be used for batch and stream processing.Same code cannot be used for batch and stream processing.9.State ManagementSupports State ManagementSupports State Management as well10.Message Delivery GuaranteesSupports one message processing mode: ‘at least once’.Supports three message processing mode: ‘at least once’, ‘at most once’, ‘exactly once’.11.Fault ToleranceIf a process fails, Spark restarts workers via resource managers. (YARN, Mesos)If a process fails, the supervisor process starts automatically.12.Throughput100k records per node per second10k records per node per second13.PersistenceMapStatePer RDD14.ProvisioningBasic monitoring using GangliaApache Ambaripache Spark: Apache Spark is a general-purpose, lighting fast, cluster-computing technology framework, used for fast computation on large-scale data processing. It can manage both batch and real-time analytics and data processing workloads.  Spark was developed at UC Berkeley in the year 2009. Apache Storm:Apache Storm is an open-source, scalable fault-tolerant, and real-time stream processing computation system. It is a framework for real-time distributed data processing, which focuses on stream processing or event processing. It can be used with any programming language and can be integrated using any queuing or database technology.  Apache Storm was developed by a team led by Nathan Marz at BackType Labs. Apache Spark Vs. Apache Storm1. Processing Model: Apache Storm supports micro-batch processing, while Apache Spark supports batch processing. 2. Programming Language:Storm applications can be created using multiple languages like Java, Scala and Clojure, while Spark applications can be created using Java and Scala.3. Stream Sources:For Storm, the source of stream processing is Spout, while that for Spark is HDFS. 4. Messaging:Storm uses ZeroMQ and Netty as its messaging layer while Spark is using a combination of Nettu and Akka for distributing the messages throughout the executors. 5. Resource Management:Yarn and Meson are responsible for resource management in Spark, while Yarn and Mesos are responsible for resource management in Storm. 6. Low Latency: Spark provides higher latency as compared to Apache Storm, whereas Storm can provide better latency with fewer restrictions.7. Stream Primitives:Spark provides with stream transforming operators which transform DStream into another, while Storm provides with various primitives which perform tuple level of processing at the stream level (functions, filters). 8. Development Cost:It is possible for Spark to use the same code base for both stream processing and batch processing. Whereas for Storm, the same code base cannot be used for both stream processing and batch processing.  9. State Management: The changing and maintaining state in Apache Spark can be updated via UpdateStateByKey, but no pluggable strategy can be applied in the external system for the implementation of state. Whereas Storm does not provide any framework for the storage of any intervening bolt output as a state. Hence, each application has to create a state for itself whenever required. 10. Message Delivery Guarantees (Handling the message level failures):Apache Spark supports only one message processing mode, viz, ‘at least once’, whereas Storm supports three message processing modes, viz, ‘at least once’ (Tuples are processed at least one time, but can be processed more than once), ‘at most once’  and ‘exactly once’ (T^uples are processed at least once). Storm’s reliability mechanisms are scalable, distributed and fault-tolerant. 11. Fault-Tolerant:Apache Spark and Apache Storm, both are fault tolerant to nearly the same extent. If a process fails in Apache Storm, then the supervisor process will restart it automatically, as the state management is managed by Zookeeper, while Spark restarts its workers with the help of resource managers, who may be Mesos, YARN or its separate manager.12. Ease of Development: In the case of Storm, there are effective and easy to use APIs which show that the nature of topology is DAG. The Storm tuples are written dynamically. In the case of Spark, it consists of Java and Scala APIs with practical programming, making topology code a bit difficult to understand. But since the API documentation and samples are easily available for the developers, it is now easier. Summing Up: Apache Spark Vs Apache StormApache Storm and Apache Spark both offer great solutions to solve the transformation problems and streaming ingestions. Moreover, both can be a part of a Hadoop cluster to process data. While Storm acts as a solution for real-time stream processing, developers might find it to be quite complex to develop applications due to its limited resources. The industry is always on a lookout for a generalized solution, which has the ability to solve all types of problems, such as Batch processing, interactive processing, iterative processing and stream processing. Keeping all these points in mind, this is where Apache Spark steals the limelight as it is mostly considered as a general-purpose computation engine, making it a highly demanding tool by IT professionals. It can handle various types of problems and provides a flexible environment to in. Moreover, developers find it to be easy and are able to integrate it well with Hadoop. 
Rated 4.5/5 based on 2 customer reviews
6612
Apache Spark Vs Apache Storm - Head To Head Compar...

In today’s world, the need for real-time data st... Read More

4 Types Of Data Analytics To Improve Decision-Making

If you are on CSE stack portal, there’s a good chance that you are already well acquainted with the general terms like ‘Data Analytics’, ‘Big Data’ and ‘Business Intelligence’ lead to different things in different circumstances. But have you thought what would be the right BI platform to hack through a wide number of solutions for business success? In this article, I will knuckle down disambiguating the term ‘Data Analytics’ by splitting it down into 4 different types and aligning them with decision-making objectives. Descriptive Analytics: What happened? The commonest of the common type of Analytics, Descriptive Analytics offers the analyst a comprehensive view of key metrics and measures within an organization. It analyses the data available in real-time as well as historical data to derive meaningful insights regarding the future of a company. The main aim of this basic type of analytics is to discover the reasons behind pretentious success or failure in the past, as a result it is also known as ‘Reporting Bedrock’. A business learns from its past behaviors, and draws inceptions based on those observations about its future outcomes, how they are going to affect. Descriptive Analytics is clouted the best when a business is on its way to understand the overall performance of the organization at an aggregate level and perceive the various aspects. The best example of this would be a profit and loss statement. In the same way, analysts can possess data on a huge population of customers – delving deeper into mastering the demographic information of these customers can be classified as ‘descriptive analytics’. Diagnostic Analytics: What made it happen? The next stop to understand the intricacies of Data Analytics after Descriptive Analytics is Diagnostic Analytics. After assessing descriptive data, brilliant diagnostic analytical tools enable an analyst to go deeper into the problem, with the help of drilldowns and queries to eradicate the root-cause of the trouble. In simple words, in this analytics, historical data are ascertained against other data to reveal the answer of the question ‘why it happened’. With Diagnostic Analytics, the companies are now able to make breakthroughs, to pick out the dependencies and to discern patterns. Organizations prefer this type of analytics as it gives them a deeper perception regarding a specific problem. On the other hand, the organizations should keep all the detailed information by their side, otherwise data collection may turn out to be time-consuming. Effectively designed, well-integrated Business Information (BI) dashboards that assimilate the readings of time-series data, and participating filters and drilldown capabilities are deemed perfect for such analysis. Predictive Analytics: What is going to happen? It is all in the right predictions. Predictive Analytics involve analysis of past data patterns and trends to accurately forecast the future business outcome. It helps in determining realistic goals for the company and its effective execution and moderating expectations, by manipulating the findings of Descriptive and Diagnostic Analytics. Thanks to Predictive Analytics, as it is now easy to identify tendencies, clusters and exceptions, while predicting future trends – all of this makes this analytics an extremely valuable tool of help. By employing numerous machine learning algorithms and statistical approaches, Insight Analytics eventually predicts the likelihood of an event happening in the future, but remember, these assumptions are based on predictions and probabilities, hence not 100% accurate. Big conglomerates like Amazon and Walmart leverage this high-in-value type of analytics to decipher future sales trend, customer behaviors, purchase patterns and lot more. Prescriptive Analytics: What is to be done? This is where Big Data and Artificial Intelligence gets into action. The main objective of Prescriptive Analytics is to prescribe what action is to be taken to address the future problem. It is the next stop after Predictive Analytics to help business understand the underlying reasons of complications and devise the best of course of action. It shares insights on possible results and outcomes that eventually maximize chief business metrics. It works by combining mathematical models, data and numerous business rules. The data can be external as well as internal, while business rules are boundaries, preferences, best practices and other restraints. Machine learning, natural language processing, operations research and statistics area few examples of mathematical models. Though complex in nature, Prescriptive Analytics when used by companies can have a huge impact on the overall operations and future business growth. The best example of this type of analytics is a traffic application that enables you to select the easiest route to home, after paying attention to the distance of the route, the speed of travelling and prevailing traffic constraints in the city you are travelling. The current trends highlight that an increasing number of companies are appreciating Big Data solutions and looking forward to Data Analytics implementation.However, it is just that they should select the right type of analytics solutions to enhance ROI, increase service quality and lessen operational costs. Do you have any other information or thought on this topic? Feel free to share with us by commenting below.
Rated 4.0/5 based on 20 customer reviews
4 Types Of Data Analytics To Improve Decision-Maki...

If you are on CSE stack portal, there’s a good c... Read More